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Abstract 
Orthotropic steel decks are lightweight compared to concrete decks and are used in 

many long-span bridges and urban expressways. Rehabilitation of bridges by replacing 

deteriorated concrete decks is also an application of orthotropic steel decks and its de-

mand is increasing. However, many fatigue cracks have been detected in orthotropic 

steel decks. In particular, fatigue of the connections between longitudinal ribs and 

transverse ribs is the most significant type of damage found in orthotropic steel decks. 

Fatigue crack inspections of Japanese urban expressways detected approximately 

10,500 cracks and approximately 40% of all cracks were at the longitudinal-rib to 

transverse-rib connections. Though several types of connections have been proposed in 

previous studies, fatigue cracks still occur.  

Orthotropic steel decks are composed of comparatively thin steel plates down to 6 

mm and are subjected to vehicle loads directly. Therefore, these thin flexible steel plates 

easily deform into the out-of-plane direction, and cause, for example, local bending of 

deck plates, or torsion and distortion of ribs. The deformed longitudinal and transverse 

ribs are constrained by each other at the connections, which also induce local 

out-of-plane bending of the ribs. The out-of-plane bending stresses have not been taken 

into account for fatigue designs, which treat nominal or in-plane membrane stresses as 

the acting stresses.  

Directions of out-of-plane deformations can be reversed by moving the loading posi-

tions. Since actual vehicles run at transversely distributed positions, the loading 

positions can be located anywhere in the distribution. Out-of-plane bending reversals 

can cause stress reversals from tension to compression and increase the stress ranges at 

the joints in orthotropic steel decks. 

However, previous studies have not sufficiently considered the three-dimensional de-

formations caused by in-plane as well as out-of-plane deformations of the ribs at the 

connections. Some studies have investigated the fatigue strength of a connection with 

loading by using beam models, which do not cause torsion and distortion of the ribs. 

The stress reversals by moving the loading conditions should also be taken into account. 

Insufficient considerations of the loading position can lead to incorrect evaluation re-

sults of the fatigue strength. Furthermore, since the stress concentration points in the 

connections can move as the loading position moves, incorrect loading conditions can 

result in erroneous crack initiation points. 

  From the above background, this study investigated the critical loading conditions 

that can cause the most severe stress conditions for fatigue of various types of connec-

tions, while taking account of the above stress occurrence mechanisms. After that, the 

fatigue strengths of the connections under the critical loading conditions were investi-

gated to propose a suitable structure for orthotropic steel decks. The longitudinal-rib 

types and slits (or cut outs) on the transverse ribs were varied as parameters since the 

effect of longitudinal-rib types on fatigue strength have not previously been investigated 

under the same conditions. 



 

 

 

  The target fatigue performance was set to 100-year fatigue lives, and was translated 

to 10
7
 cycles of a fatigue design load with the critical loading condition, which implies 

that the fatigue design load cannot cause stress ranges over constant amplitude fatigue 

limits. In addition, another objective was to evaluate fatigue lives of connections under 

actual traffic conditions. It was found that orthotropic steel decks with plate ribs and 

non-slit connections are the suitable structure and would satisfy 100-year fatigue lives. 

The results were obtained using the following procedures, separated into chapters. 

Chapter 1 reviews literature and found that slits (or cut outs) at connections were fab-

ricated for fitting up of transverse ribs to continuous longitudinal ribs, but the effects of 

slits on fatigue have not been studied with sufficient consideration of the 

three-dimensional deformations of longitudinal-rib to transverse-rib connections. The 

literature review also found that non-slit connections, in which the continuous longitu-

dinal-ribs are welded all around the transverse-rib webs, are also able to be fabricated 

and can decrease out-of-plane bending at the connections. 

Chapter 2 selects a fatigue evaluation method for longitudinal-rib to transverse-rib 

connections, based on the structural hot-spot stress approach. Since the longitudinal-rib 

to transverse-rib connections are complex shapes and have complex stress distributions 

which can change as the loading position moves, the nominal stress approach is hardly 

applicable. As the results of re-analysis on literature fatigue data, it was found that 

three-dimensional finite element analyses and the hot-spot stress approach with appro-

priate modification factors can evaluate the fatigue strength of the joints where 

out-of-plane bending of thin plates occurs. 

Chapter 3 investigates the critical loading conditions and the fatigue strength of the 

various connections. U-ribs, V-ribs and plate ribs as longitudinal ribs, and the slit and 

the non-slit transverse ribs were investigated. The shapes of V-ribs and plate ribs are al-

so varied. The critical loading conditions were identified by the combination of the 

finite element analyses and the hot-spot stress approach. The analyses also took account 

of the rotations of principal stress directions around box welds and the moving of stress 

concentration points along weld toes. Fatigue evaluations under the critical loading 

conditions clarified that applying the non-slit connection instead of the common slit 

connections can dramatically decrease the hot-spot stress ranges and increase the fatigue 

strength of the connections. 

  Chapter 4 conducts fatigue tests on the connections. The fatigue loading simulated 

the critical loading conditions. The hot-spot stress approach was confirmed to be appli-

cable to longitudinal-rib to transverse-rib connections. Furthermore, the non-slit 

connections with V-ribs and plate ribs achieved the target fatigue performance, which is 

fatigue strength corresponding to 10
7
 cycles of the design load under the critical loading 

condition. However, it was also found that U-ribs and V-ribs did not have enough fa-

tigue strength due to fatigue damage at the connection between the deck plates and the 

ribs. Therefore, orthotropic steel decks with plate ribs and non-slit connections were 

proposed as a suitable structure. 

  Chapter 5 evaluates the fatigue lives of the connections under actual traffic conditions 

by Monte Carlo simulations, since the occurrence of the critical loading conditions is 

often probabilistic and depends on the transverse distributions of vehicle positions. It 

was found that the non-slit connections can achieve 100-year fatigue lives for almost all 

heavy traffic roads in Japan. 

  Chapter 6 summarizes the results and finding of this study. 
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1. Introduction 

1.1. Background 

  Orthotropic steel decks are lightweight compared to concrete decks and are used in 

many long-span bridges and urban expressways. Some orthotropic steel deck bridges in 

Japan are 286 km in total length and 3.77 km
2
 in total deck area (Table 1-1, Mori ed. 

2010). The lightweight decks have an advantage in urban expressways where founda-

tion capacities are limited, or where construction should be simplified and/or fast. The 

lightweight decks can also be applied to long-span bridges, in which dead loads are the 

dominant factor in the design. 

Rehabilitations of bridges by replacing deteriorated concrete decks are also an appli-

cation of orthotropic steel decks and its demand is increasing in Japan. Wolchuck (1987) 

summarized deck renewals in the United States and explained that orthotropic steel 

decks are suitable for deck renewal because of their light weight, minimum restriction 

of traffic during re-decking, increased carrying capacity, long service life and minimum 

maintenance. Concrete decks of some bridges in Japan have also been damaged and re-

placed with orthotropic steel decks (Sugisaki and Kobayashi 1991). Due to the thin 

design thickness of concrete decks, the damage accelerates, especially in bridges de-

signed by the specifications before ver. 1980 (Japan Road Association 1980). 

Replacements and repair work of the decks accounted for most of the rehabilitation 

plans for expressways. 

However, many fatigue cracks have been detected in orthotropic steel decks (Nunn 

1974; Mehue 1990; Jong 2004; Yuge et al. 2004; Miki et al. 2006, 2009). Investigations 

of the Japanese Metropolitan Expressway detected fatigue damage in 63% and 25% of 

the open ribs and the closed ribs, respectively, of inspected span orthotropic steel decks 

(Miki 2009). The fatigue damage was detected even in bridges younger than 10 years. It 

should be noted that the Metropolitan Expressway has significantly heavy traffic and fa-

tigue cracks would not lead to bridge collapses immediately, even though the bridges 

would need to be repaired or retrofitted and this increases maintenance costs. 

Fig. 1-1 shows locations of fatigue cracks in orthotropic steel decks. Fatigue crack in-

itiation points can be classified into three major types: longitudinal-rib to transverse-rib 

connections, joints between longitudinal ribs and deck plates (hereinafter, rib-to-deck 

joints), and vertical stiffener to deck plate joints, indicated as 1, 2, and 3 in Fig. 1-1, re-

spectively. In particular, fatigue of longitudinal-rib to transverse-rib connections is the 

most significant damage. Investigations of Japanese urban expressways detected ap-

proximately 7,000 and 3,500 cracks in closed-rib and open-rib orthotropic steel decks, 

respectively, and 41% and 91% of them were detected in the longitudinal-rib to trans-

verse-rib connections (Mori ed. 2010, Fig. 1-2). The difference of the percentage is 

assumed to be due to the second significant fatigue damage at the rib-to-deck joints. 

This significant damage is only a problem for closed-rib types. 

  Though several types of longitudinal-rib to transverse-rib connections have been 

proposed previously, fatigue crack occurrences have not stopped. Many proposals aim 

to improve the fatigue strength of the connections by changing the slit (cut-out) shapes, 
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or adding bulkheads or attachments, though some of these modifications would increase 

fabrication costs. Non-slit connections, in which continuous longitudinal ribs are weld-

ed all around to transverse-rib webs, have also been studied and were expected to have 

high fatigue strength, but these connections have not been widely applied due to their 

difficult fabrication. Details of previously studied connections are mentioned in “1.2 

Literature review”.  

Conventionally, longitudinal ribs and transverse ribs have been designed as girders 

with deck plates as upper flanges. Therefore, in-plane bending of the girders and the 

corresponding stress were considered for the fatigue design in old specifications (Japan 

Road Association 1980). 

On the other hand, actual orthotropic steel decks undergo complex deformations. Or-

thotropic steel decks are composed of comparatively thin steel plates down to 6 mm and 

are subjected to vehicle loads directly. Therefore, the thin flexible steel plates easily de-

form into the out-of-plane direction, and cause, for example, local bending of deck 

plates, or torsion and distortion of the ribs. The deformed longitudinal ribs and trans-

verse ribs are constrained by each other at the connections, and induce local 

out-of-plane bending of the ribs. Out-of-plane bending stresses have not been taken into 

account in conventional fatigue designs, which consider nominal or in-plane membrane 

stresses as the acting stresses.  

Directions of out-of-plane deformations can be reversed by moving the loading posi-

tions. Since actual vehicles are distributed in transverse positions, the loading positions 

can be located anywhere in the distribution. Out-of-plane bending reversals can cause 

stress reversals from tension to compression and increase the stress ranges at the joints 

in orthotropic steel decks. 

Hot spots, where local stress concentrations occur, can also move along weld toes as 

the loading positions move. As a rule, hot-spot locations can be determined by the mac-

ro stress direction and weld toe shapes. Since deformations can change as the loading 

positions move, local stress directions can also change, and this results in moving of the 

hot spots along the weld toes. 

However, previous studies did not sufficiently consider three-dimensional defor-

mation and the properties of the fatigue, which can be caused by in-plane as well as 

out-of-plane deformations of the ribs at the connections. Some studies used beam mod-

els to investigate the fatigue strength of the connection with loading on the connection, 

though those models do not cause the torsion and the distortion of the ribs. The stress 

reversals by the moving of the loading conditions should also be taken into account. In-

sufficient considerations of the loading position can lead to incorrect evaluation results 

of the fatigue strength. Furthermore, since stress concentration points in the connections 

can move as the loading position moves, incorrect loading conditions can result in erro-

neous crack initiation points. 

 

  Therefore, by taking account of the above stress occurrence mechanisms, this study 

investigated the critical loading condition that can cause the most severe stress condi-

tions for the fatigue of various types of connections. The fatigue strengths of the 

connections under the critical loading conditions were investigated in order to propose a 

suitable structure for orthotropic steel decks. The longitudinal-rib types and slits on the 

transverse ribs were varied as parameters, because the effects of longitudinal-rib types 

on fatigue strength have not been previously investigated under the same conditions. 
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  The target fatigue performance was set to 100-year fatigue lives, translated to 10
7
 cy-

cles of a fatigue design load with the critical loading condition. In addition, fatigue lives 

of the connections were evaluated under actual traffic conditions, since occurrence of 

critical loading conditions can be probabilistic depending on the distributions of the ve-

hicle transverse positions. 

From the above backgrounds, the following objectives of this study were established. 

 

1) Select a fatigue evaluation method for longitudinal-rib to transverse-rib connections, 

where out-of-plane bending of thin plates occurs. 

2) Investigate the critical loading conditions for various types of connections by taking 

account of moving vehicles. 

3) Confirm the applicability of the fatigue evaluation method to longitudinal-rib to 

transverse-rib connections. 

4) Investigate the fatigue lives of the connections under the critical loading conditions. 

5) Evaluate the fatigue lives of the connections under actual traffic conditions. 
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1.2. Literature review 

1.2.1. Development of longitudinal-rib to transverse-rib connections 

(1) Introduction of slits for fabrications 

Orthotropic steel decks were developed during the 1940s–50s in Germany, where re-

constructions after the 2nd world war were required under a limited steel supply (Seeger 

1964). Orthotropic steel decks were structurally more efficient than older steel decks, 

such as the battle decks developed in the 1930s in the US (Lyse 1938), because deck 

plates function not only as the top surface but also as the upper flanges of longitudinal 

ribs and transverse ribs. However, the intersections between longitudinal and transverse 

ribs have to be fabricated. In the early stages of development, longitudinal ribs were 

separated at transverse ribs and welded to transverse rib webs by load-carrying fillet 

welds (Fig. 1-3a).  

The discrete longitudinal ribs were altered by continuous longitudinal ribs to avoid 

load-carrying fillet welds at transverse ribs from the viewpoint of fatigue and fracture 

(Fielder 2009). 

Afterward, slits were introduced on transverse-rib webs in order to easily fabricate 

the connections with the continuous longitudinal ribs. To fabricate continuous longitu-

dinal ribs with open sections and bottom flanges, longitudinal ribs were inserted into the 

slits on transverse-rib webs, as shown in Fig. 1-3b (Seeger 1964), or the transverse ribs 

were moved horizontally. After that, longitudinal ribs were continuously welded on 

deck plates before assembling the transverse ribs. However, it was difficult to fit the 

transverse ribs to longitudinal ribs having weld imperfections. Therefore, more efficient 

fabrications in the 1960s were achieved by enlarging the slit, as shown in Fig. 1-3c (鋼

床構造の進捗調査分科会 1982). Another aspect of introducing slits on connections 

between U-ribs and transverse ribs were to remove stress concentrations from non-slit 

connections, though the slit created other stress concentration points in U-rib walls 

(Buckland 2004). 

 

(2) Upper scallop details 

Previous studies recommended removing the upper scallops on transverse-rib webs 

(Fig. 1-4). Upper scallops were added at the connections of three members; deck plates, 

transverse-rib webs, and longitudinal-rib walls. Miki et al. (1995) conducted fatigue 

tests on deck panels stiffened by U-ribs, which were loaded by a three-jack system to 

simulate a running tire, and found that longitudinal-rib to transverse-rib connections 

without the upper scallop had higher fatigue strength than those with the upper scallops. 

Mori and Harada (2011) also concluded the upper scallops decreased the fatigue lives 

by cracks initiating from the weld roots of rib-to-deck joints and propagating in the 

weld metals. Based on previous studies including the studies above, standard longitudi-

nal-rib to transverse-rib connections recommended by present Japanese specifications 

do not have the upper scallops for both closed and open ribs, as shown in Fig. 1-4 (Ja-

pan Road Association 2014). 

 

(3) Slit (lower cut-out) details for closed ribs 

 For fatigue improvements of longitudinal-rib to transverse-rib connections, slit and 

non-slit webs of transverse ribs were compared in European studies, which unfortu-

nately did not sufficiently consider loading positions. Bruls (1991, Chapter 5) and 
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Kolstein (2001) summarized European research including longitudinal-rib to trans-

verse-rib connections for both U-ribs and V-ribs with three types of transverse-rib webs: 

non-slit, conventional slit, and improved slit (Fig. 1-5). The improved slit for the U-ribs 

was proposed by Hibach (1983). It was concluded that the non-slit webs had longer fa-

tigue lives than the slit webs for the U-ribs, and the slit webs functioned better than the 

non-slit webs for the V-ribs. However, the experimental loads were located on trans-

verse ribs or longitudinal ribs, even though U-rib distortion had a significant effect on 

fatigue, as indicated by Lehrke (1997). This result means that fatigue load locations 

should be eccentric to the axes of both the U-ribs and the transverse ribs. The fatigue 

loads on the transverse ribs are explained as follows. The fatigue at the slit ends can be 

analyzed by a model composed of a simply supported crossbeam, a short length of lon-

gitudinal ribs, and deck plates, because the stress level in the web near the slits is 

proportional to the shear forces in the transverse ribs and is influenced by the loads in-

troduced locally into the transverse ribs. 

  The advantage of the non-slit transverse-rib web for U-ribs was also noted in the 

Japanese development of an orthotropic steel deck with large-size U-ribs, but the ad-

vantage was not confirmed experimentally. Katsumata et al. (2000) found that fixing the 

bottom flanges of U-ribs to transverse-rib webs can decrease the U-rib side stress near 

the box welds at the slit end by 75%. Mizuguchi et al. (2000, 2004) also recommended 

fixing the U-rib bottom flanges transversely by welding. Ohashi et al. (2000) found the 

non-slit webs compared to the slit webs can decrease the stress on longitudinal-rib to 

transverse-rib connections. Those three studies took moving of the loading position into 

account. However, Ohashi et al. (2000) also indicated fabrication difficulties of non-slit 

connections. Those studies did not confirm the fatigue strength and fatigue lives of 

non-slit connections by fatigue tests or by fatigue assessment with established methods. 

Bulkheads, which are inner diaphragms welded in closed longitudinal ribs at the 

transverse-rib cross section, could improve the fatigue strength of longitudinal-rib to 

transverse-rib connections, but they lead to load-carrying welded joints (Fig. 1-6a). The 

bulkheads can decrease the stresses on the U-ribs near the slit ends by fixing 

out-of-plane deformations of the closed ribs (Katsumata et al. 1999, 2000; Ohashi et al. 

2000; Taskopoulos et al. 2003, Conner and Fisher 2006). However, the bulkheads 

change the conditions of the welds between longitudinal ribs and transverse ribs to 

load-carrying types, since stresses on transverse-rib webs travel via the bulkheads 

(Ohashi et al. 2000). Load-carrying welded joints require deeper weld penetrations for 

complete joint penetrations (Taskopoulos et al. 2003). 

  Recent studies, most of which take advantage of finite element analyses, found that 

an inner stiffener welded in the U-ribs at transverse rib cross sections or additional 

notches of the web slits can likely decrease local stresses on the box weld toes at the slit 

ends. Suganuma and Miki (2006, 2007a), and Miki and Suganuma (2014) computed 

structural hot-spot stresses caused by a moving tire load for connection details with and 

without an inner stiffener, and with various slit shapes (Fig. 1-6b). Fatigue tests for 

some of the analyzed connection details were also conducted. They concluded that the 

inner rib can decrease the stresses on both sides of the box welds at the slit ends. Hanji 

et al. (2013) conducted finite element analyses with local stress approaches to compare 

the fatigue strength of various details, including a normal type, an enlarged slit type, an 

improved additional notch type, an inner rib type likely used in the Tokyo Gate Bridge, 

and a fixed U-rib bottom flange type. The inner rib type and the improved additional 
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notch type had the lowest and second lowest local stress ranges, respectively, due to the 

decrease of U-rib wall bending by the inner stiffener and the flexible web slits. Sugiya-

ma et al. (2014) tried to optimize the shape of the improved additional notched slit with 

finite element analyses and conducted fatigue tests. The proposed additional notched slit 

was found to decrease stress on the U-rib side weld toe by 75% and to increase fatigue 

lives in comparison with the normal slit. But the fatigue in that study did not sufficiently 

consider stress reversal, which is caused by the transversely distributed vehicle posi-

tions described in detail in “1.2.3. Loading position effects for fatigue”. Therefore, the 

stress range in the fatigue test would be smaller than possible stress ranges occurring on 

actual bridges. 

Although bulkheads or inner stiffeners would decrease stress ranges occurring at lon-

gitudinal-rib to transverse-rib connections, these would increase fabrication costs and 

thus leading to the increase of total project costs. A cost analysis of orthotropic deck 

projects conducted by Wolchuck (2004) indicated that the labor cost in the fabrication 

and election accounts for 80% of the total project cost. Therefore, the additional mem-

bers and fabrication processes of longitudinal-rib to transverse-rib connections would 

affect the total project costs. In addition, the cost analysis also indicated that using the 

non-slit connection as an alternative to the connection with the bulkhead could save up 

to 15% of the fabrication cost. A part of the cost reduction would come from complete 

joint penetrations and toe ground of the connection with the bulkheads. 

 

(4) Slit (lower cut-out) details for open ribs 

  As in the slit details for closed ribs, non-slit details would have high fatigue strength, 

though it would also have fabrication difficulties. Iwasaki et al. (1992) conducted finite 

element analyses and found plate ribs with both side surfaces welded to transverse rib 

webs can decrease the stress on longitudinal-rib to transverse-rib connections compared 

to the asymmetric slit, which is the standard detail of the Japanese specification (Japan 

Road Association 2014). The asymmetry slit causes high stress on the box weld at the 

upper end of the slit. Iwasaki et al. (1992) describes that the non-slit connection requires 

high fabrication accuracy and the connection with only a lower circle slit is recom-

mended. Fryba and Gajdos (1999) summarized European experimental studies for 

orthotropic steel decks in railway bridges (Fig. 1-7), and based on their results the con-

nection with a lower “apple” form slit was recommended. Fryba and Gajdos (1999) 

concluded that non-slit connections show high fatigue strength, but they require ad-

vanced welding technology to weld the connections with the smallest possible residual 

stresses. For the longitudinal-rib to transverse-rib welds, it was recommended to prepare 

grooves at edges of the transverse-rib web and weld four vertical lines at the same time 

with automated welding operations. Yamaoka (2010) proposed a retrofit method to bolt 

angle steel on the connections with the asymmetric slits to make both side surfaces of 

longitudinal bulb ribs connected to the transverse-rib web. This method would not re-

quire high fabrication accuracy but would require additional fabrication costs. 

  Unfortunately, the previous studies do not sufficiently simulate the behavior of the 

longitudinal-rib to transverse-rib connections. Most of the experimental and analytical 

studies were conducted with models composed of simply supported transverse ribs and 

short lengths of longitudinal ribs and deck plates. Loads were put on the simply sup-

ported transverse ribs, except in ERRI D 191 research program, in which longitudinal 

ribs were loaded but out-of-plane deformations of the ribs were not induced. (Fryba and 
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Gajdos 1999). However, as Miki et al. (1991a) and Tateishi et al. (1995) showed, trans-

verse-rib webs are under bending and the bending stresses on the webs are almost 

similar values to membrane stresses. This observation might mean that loads not posi-

tioned on but at a distance from the transverse ribs could cause maximum or minimum 

stresses on longitudinal-rib to transverse-rib connections. Zhang et al. (2016) conducted 

finite element analyses on deck panel models with various types of longitudinal-rib to 

transverse-rib connections and a tire load moving both longitudinally and transversally. 

The connections with the apple form slit were again recommended, but they did not 

show the critical loading positions used to determine the stress ranges of the connec-

tions. 

 

1.2.2. Complex deformation shape of orthotropic steel decks 

(1) Out-of-plane bending of deck plates 

  Since the deck plate support vehicle loads directly, local areas of the deck plates can 

easily deform in the out-of-plane direction. Nunn and Cuninghame (1974a, b) conduct-

ed static loading tests on deck panels with five U-ribs or five V-ribs, and found that 

out-of-plane components are dominant in stresses measured on deck plates. The meas-

ured points were adjacent to the rib-to-deck joints, and the measured stress directions 

were transverse. Cullimore (1981) conducted static loading tests and finite element 

analyses on a deck panel model with two V-ribs. They found that the transverse bending 

moment in the deck plate was greater than the longitudinal bending moment, and the 

highest stress in the deck plate occurred locally under the wheel load. The highest 

stresses result from the transverse bending moment caused by the local out-of-plane 

deformation of the deck plates. 

  The stresses in the deck plates reverse due to the out-of-plane deformation of the deck 

plates. Nirasawa (1992) conducted finite element analyses on a deck panel model with 

five U-ribs between main girders and concluded that the transverse stresses in the deck 

plate adjacent to the rib-to-deck joints reverse as the wheel loading passes the stress ref-

erence point. The stress reversal was explained as the combination of global deflection 

of the orthotropic plate and local out-of-plane bending of the deck plates. Ono et al. 

(2005) conducted static loading tests on a deck panels with three U-ribs and found the 

similar stress behavior. Both Cullimore (1981) and Ono et al. (2005) noted that the 

stress reversal should be taken into account in the fatigue evaluation of the rib-to-deck 

joints. The stress reversal can cause not only the stress range increase, but also the av-

erage stress change, as was confirmed later to affect the fatigue of the joints (Inokuchi et 

al. 2008; Kainuma et al. 2008, 2016). 

  In addition to the deck plate side, the longitudinal-rib side of the rib-to-deck joints is 

also subjected to transverse bending. Cullimore (1981) conducted static loading tests 

and finite element analyses, as mentioned above, and found that the transverse bending 

moment at the longitudinal ribs adjacent to the joints was reversed. It was also found 

that the stresses in orthotropic steel decks with V-ribs were less than those with U-ribs, 

in later of which the distortions when subjected to wheel loads have an increased bend-

ing moment. Ono et al. (2005) explained that the directions of the local transverse 

bending of the longitudinal ribs adjacent to the joints depend on the transverse position 

of the wheel loading. 
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(2) Three-dimensional deformations of longitudinal-rib to transverse-rib connections 

  As in the deck plates, longitudinal ribs and transverse ribs are also forced to deform 

in the out-of-plane direction. The longitudinal ribs and transverse ribs are designed as 

girders with a deck plate as the upper flange of both, and in-plane bending of the girders 

was conventionally considered for fatigue design in old specifications (Japan Road As-

sociation 1980). However, the ribs are also subjected to out-of-plane deformations such 

as the out-of-plane bending of plates, and torsion and distortion of the ribs. Fig. 1-8a 

and b show examples of in-plane deformations, and the mix of in-plane and 

out-of-plane deformations, respectively. 

  The deformed longitudinal ribs and transverse ribs are constrained by each other at 

the connections, which induce local out-of-plane bending of the ribs. Miki et al. (1991) 

and Tateishi et al. (1995) conducted field measurements of strains at longitudinal-rib to 

transverse-rib connections with both open and closed longitudinal ribs and clarified that 

similar values of membrane and bending stresses are caused on the transverse-rib web 

side of the connections. Miki et al. (1991) also conducted modal analyses to identify the 

cause of out-of-plane bending stresses on transverse-rib webs and found rotations of the 

web about the transverse axis is dominant in the case of closed ribs, whereas rotations 

of the web about the vertical axis were found to occur in the case of open-rib decks. 

  As mentioned above, torsion and distortion of closed longitudinal ribs lead to local 

stresses at the connections (Leendertz 2008; Delesie et al. 2008). Lehrke (1997) calcu-

lated the out-of-plane bending stress on closed-rib walls caused by closed-rib distortions 

and found that the influence line of the distortion-induced stress is independent of the 

influence surface of the in-plane bending moment of the longitudinal ribs. Katsumata 

(1999) found that rotations of U-ribs with cross-section shapes fixed by inner dia-

phragms cause significant stress leading to fatigue damage at the U-rib sides weld toes 

at the slit ends. Unfortunately, those calculations did not obtain reliable local stresses 

due to stress singularities in the analyses, as indicated by Lehrke (1997). In addition, 

Poisson’s effect could also cause out-of-plane bending on the closed-rib walls (Wol-

chuck 1992).  

  At connections between the open ribs and transverse ribs with the slits, one side of 

the open-rib walls are welded to the transverse-rib webs, as recommended by the Japa-

nese specification (Japan Road Association 2014). In this connection, the deck plates at 

the slits deform locally into the out-of-plane direction. Iwasaki et al. (1992) conducted 

finite element analyses and found high out-of-plane bending stress occurred on the deck 

plate. 

 

1.2.3. Loading position effects for fatigue 

(1) Critical loading conditions for fatigue of the connections 

Since the stresses at the longitudinal-rib to transverse-rib connections can be caused 

by the torsion and the distortion of the ribs, large local stress at the connection can be 

caused by eccentric loading. Beales (1990) conducted static loading tests on V-rib deck 

panel models and showed the tire positions that cause minimum (maximum compres-

sion) surface stress on the transverse-rib web adjacent to the slit end are not on the axes 

of either the V-rib or the transverse rib, as shown in Fig. 1-9. Miki et al. (1995) con-

ducted static loading tests on a deck panel model with U-ribs and found that the tire 

positions that maximize both the membrane and the bending stresses on the slit end of 

the transverse-rib web are not on the connection but at a distance away from the center 
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axes of both the U-rib and the transverse ribs. More recent works with finite element 

analyses also found the critical loading positions for U-ribs to transverse-rib connec-

tions (Hanji et al. 2013; Harada et al. 2016).  

Those loading positions should be taken into account for fatigue evaluations, since 

the fatigue of the welded joints is dominated by the maximum stress range, although the 

stress history on the joints also affects fatigue lives. Therefore, Miki et al. (1995) indi-

cated that a fatigue investigation without consideration of the loading positions cannot 

simulate actual fatigue cracks and fatigue strength.  

In addition, as the loading position moves, the torsion and the distortion deformation 

of the ribs can be reversed. The deformation reversal results in stress reversal at the lon-

gitudinal-rib to transverse-rib connections where out-of-plane bending stress caused by 

the torsion and the distortion are dominant. Therefore, both tension and compression 

surface stresses occur at the connection, since the transverse positions of the vehicles 

are distributed. The critical loading condition, which is the most severe condition, is that 

vehicles run over positions causing the maximum and the minimum stresses on the 

connections. 

Furthermore, the probabilities of the maximum stress range occurrence can affect the 

fatigue lives of longitudinal-rib to transverse-rib connections. Since vehicle positions 

are not always the critical loading conditions, statistical simulations are required to es-

timate fatigue lives of longitudinal-rib to transverse-rib connections. Beales (1990) 

conducted statistical simulations to estimate the fatigue lives of connections between 

V-ribs and transverse ribs in the case of slit and non-slit transverse-rib webs by using the 

stress obtained by static loading tests and the fatigue strength obtained by component 

fatigue tests. Yan et al. (2016) also conducted similar simulations to estimate the fatigue 

lives of a orthotropic steel deck with U-ribs by finite element analysis. 

 

(2) Distributed transverse positions of vehicles 

In actual traffic conditions, the transverse positions of vehicles are not fixed but dis-

tributed. Leonard (1969) and Takada (2009a) measured transverse vehicle distributions 

in England and Japan, respectively. The measurements resulted in distributions similar 

to normal distributions with standard deviations of 300–330 mm and 179 mm (Fig. 

1-10). The results indicate that transverse vehicle distributions have to be taken into ac-

count for the fatigue investigations of orthotropic steel decks, since stress on 

longitudinal-rib to transverse-rib connections can be reversed from compression to ten-

sion, as mentioned above. However, it should be noted that both of the above 

investigations stated that vehicle transverse distributions would depend on road width. 

  Eurocode stipulates that transverse traffic distributions should be taken into account 

in steel deck designs, though Japanese and American specifications do not (European 

Committee for Standardisation 2003; Japan Road Association 2014; American Associa-

tion of State Highway and Transportation Officials 2012). The vehicle transverse 

distribution for design recommended by Eurocode is similar to a normal distribution. 

American specifications for the load and resistance factor design (LRFD) describe de-

sign loads positioned to the most severe conditions for fatigue, regardless of the present 

position of traffic lanes, because traffic lanes could be changed in the future. In the case 

of LRFD, maximum or minimum stresses on evaluated joints will be considered. How-

ever maximum stress ranges will be overlooked since the vehicle transverse position is 

not distributed. 
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1.2.4. Fatigue improvements of the rib-to-deck joints 

(1) Two types of fatigue cracks 

  Rib-to-deck joints have the fatigue problem of cracks initiated from the weld root and 

propagated into deck plates or welds (deck cracks or bead cracks in the following). Ac-

cording to investigation of bridges under service, both types of cracks have been 

reported at longitudinal-rib to transverse-rib connections and at the middle part between 

a transverse rib and the next transverse rib. 

 

(2) Required weld penetrations and throat thicknesses for bead cracks 

  The fatigue strength of bead cracks initiated from weld roots of rib-to-deck joints can 

be improved by sufficient weld penetrations and weld throat thicknesses. Maddox 

(1974) conducted fatigue tests on component joints and concluded that both fillet weld-

ed and butt welded rib-to-deck joints gave similar fatigue strength of bead cracks in 

terms of bending stress in the weld, where the fillet welded and the butt welded models 

corresponded to 0% and 100% penetrations, respectively. Though the study did not take 

account of the global structural behavior of deck panels, the result meant that thicker 

welds provide higher fatigue strength. Suganuma and Miki (2007b) computed the notch 

stress on the weld root by finite element analyses on a full bridge model with 75% pen-

etrated and fillet welded rib-to-deck joints. The result shows the lack of weld 

penetrations increased the deck side stress by 16% and caused stress concentrations at 

the weld material side of the tip of the weld root, where no stress concentration was ob-

served in the 75% penetration case. Hirayama et al. (2015) conducted fatigue tests with 

a running wheel load on deck panel specimens, and no bead cracks were observed after 

0.89 million cycles of a 147 kN double tire on a 75% penetration model, compared to 

cracks penetrating the weld bead after 0.25 million cycles of 147 kN on a fillet welded 

model. Based on such investigation results, ≧75% penetrations are required by JSHB, 

and also ≧80% penetrations by AASHTO LRFD, and ≦2 mm un-welded thickness by 

Eurocode (European Committee for Standardisation 2006; Japan Road Association 

2014; American Association of State Highway and Transportation Officials 2012). 

AASHTO LRFD also prohibited weld melt-through, which can decrease the fatigue 

strength of rib-to-deck joints (Sim et al. 2009). 

 

(3) Stress reduction by surfacing support 

  Behaving as a part of structural members, surfacing or pavements decrease stresses of 

orthotropic steel decks but the decrease depends on temperature. Nunn and Cuninghame 

(1974a) conducted static loading tests on U-rib deck panel specimens with and without 

38-mm asphalt surfacing. Stress reductions at rib-to-deck joints after asphalt surfacing 

were up to 20% compared to un-paved deck panels. Fields measurements by Iwasaki et 

al. (1997) showed that the stresses of orthotropic steel decks increase linearly to the as-

phalt temperature increase up to 40°C. By using field measurements and static loading 

tests, Cheng et al. (2004a) found stresses of orthotropic steel decks with 30–35 mm as-

phalt surfacing became similar to those without surfacing when the asphalt temperature 

reached 45°C. Hence, the surfacing behaves as a part of the deck plate but the stiffness 

has a temperature dependency. 

  However, the stress reductions by the surfacing are less effective on the ribs than on 

the deck plates. Takada et al. (2010) conducted field measurements on a bridge with 
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U-ribs in summer and winter, where the temperature difference between seasons was 

approximately 20°C. The measurement found differences between stresses in summer 

and winter were 1.8–1.9 and 3.0–3.5 times, respectively, on decks and ribs. This result 

means that stresses on deck plates can easily be decreased by surfacing compared to 

stresses on ribs. The ineffectiveness of the surfacing to the rib stress reduction was im-

plied by previously published analysis results, which indicate that the increase of the 

deck plate thickness from 14 to 20 mm can decrease the stress on the longitudinal-rib to 

transverse-rib connections by only 20% approximately (Wang and Feng 2008). 

  Due to the temperature dependency and the character of less effective reduction of rib 

stresses, the surfacing was basically not taken into account in this study. Another reason 

for neglecting the surfacing was that uncertain mechanical properties of the surfacing 

could lead to a non-conservative estimation of fatigue strength by overestimating its 

stiffness in finite element analysis. It should be noted that fatigue assessments by mod-

els without the surfacing would provide conservative results, because the existence of 

the surfacing basically reduces the stress working on orthotropic steel decks. 

 

(4) Deck plate stiffening for fatigue of rib-to-deck joints 

  Increasing deck plate thickness could improve the fatigue strength of deck cracks 

from the weld roots of rib-to-deck joints. Suganuma and Miki (2007b) computed the 

notch stress on the weld root by finite element analyses on a full bridge model and 

found that thicker deck plates can decrease the notch stress but the reduction range is 

smaller in the case where U-rib deformations are dominant than in the case where the 

deck plate bending is dominant. Some running wheel tire tests on deck panel models 

found stresses on the deck plate and propagation rates of the deck cracks can decrease 

by increasing the deck plate thickness (Cheng et al. 2004b; Inokuchi et al. 2011; Mura-

koshi et al. 2012; Saito 2013). From such investigation results, JSHB requires a 

minimum deck plate thickness of 16 mm for closed longitudinal ribs (Japan Road Asso-

ciation 2014). AASHTO LRFD and Eurocode require 16 mm for all orthotropic steel 

bridges, though Eurocode allows 14 mm deck plates in the case that the surfacing is 

thicker than 70 mm (European Committee for Standardisation 2006; American Associa-

tion of State Highway and Transportation Officials 2012). 

  In addition, stiffer surfacing materials can dramatically improve the fatigue strength 

of rib-to-deck joints. Stiffer surfacing materials, such as steel fiber reinforced concrete 

(SFRC), high or ultra-high performance concrete, and the combination of them have 

been reported in many previous studies (Jong and Kolstein 2004; Buitellar et al. 2004; 

Ono et al. 2005, 2009; Miki et al. 2007; Kodama et al. 2010; Dieng et al. 2013; Zhang et 

al. 2016). For example, Ono et al. (2005, 2009), and Miki and Suganuma (2014) con-

ducted static and cyclic loading tests on U-rib deck panels loaded by running tires. In 

the static loading tests, SFRC decreased stresses near rib-to-deck joints by up to ap-

proximately 80% compared with stresses on a non-paved deck panel, and the stress 

reductions were larger than the other alternate approaches, which were bolting a stiff-

ening plate on the deck plate and filling concrete in the U-ribs. The fatigue tests with 

two sets of 69 kN double tires in the tandem arrangement (138 kN in total) resulted in 

fatigue crack initiations in the non-paved deck after 0.50 million cycles, but no crack 

was detected in the SFRC deck after 4.4 million cycles. 
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1.2.5. Fatigue improvements of rib longitudinal joints 

  Fatigue strength of on-site welded longitudinal joints of the closed ribs can be de-

creased by weld defects and is significantly affected by the weld root gap. Kondo et al. 

(1982) conducted 4-point bending fatigue tests on U-rib models having welded longitu-

dinal joints with backing splice plates. They found that the fatigue strength of the joints 

was significantly decreased when the root gap was zero and concluded that the reduc-

tion may be due to the incomplete penetration of the groove welds. Cuninghame (1982) 

also conducted 4-point bending fatigue tests on V-rib models with three types of longi-

tudinal joints, including butt welded joints. It was recommended that the longitudinal 

joints of the types tested are treated as BS5400 class D (f =91 N/mm
2
) of the fatigue 

strength at 2.0 × 10
6
 cycles in this case, a designer can ensure an adequate standard of 

welding, as confirmed by non-destructive testing techniques capable of detecting root 

defects (Cuninghame 1982). 

  Fatigue strength of on-site bolted longitudinal joints is higher than those of welded 

joints. Fujii et al. (1993) conducted compression fatigue tests on U-rib models having 

butt welded and bolted joints and concluded that the fatigue strength of bolted joints can 

be designed by JSSC class C (f =125 N/mm
2
) compared to butt welded joints classi-

fied into JSSC class F (f =65 N/mm
2
). The Japanese fatigue design recommendation 

(日本道路協会 2002) stipulates that the on-site longitudinal joints of closed ribs 

should be bolted with a countermeasure against inner surface corrosion caused by the 

hand holes for bolted joints. 

Rib longitudinal joints have another fatigue initiation point at the box welds between 

deck plates and the scallop of longitudinal ribs. The scallops are holed to avoid overlap 

between transverse deck-to-deck butt welds and rib-to-deck joint welds or rib longitu-

dinal joints. Ohashi et al. (1997) conducted field measurements and found that stresses 

on the U-rib walls near the scallop ends can be >98 N/mm
2
 and suffer stress reversal. In 

order to reduce the stress, the longitudinal length of the scallops was recommended to 

be ≦80 mm by the Japanese fatigue design recommendation (日本道路協会 2002). 
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1.3. Outline of dissertation 

Chapter 1 reviewed related literature. It was found that the slit (or cut out) at the con-

nections was introduced for fabrication procedures of fitting up transverse ribs to 

continuous longitudinal ribs, but the effect of the slit on fatigue has not been studied 

with sufficient consideration of the three-dimensional deformations of longitudinal-rib 

to transverse-rib connections. The literature review also found that the non-slit connec-

tion, in which continuous longitudinal ribs are welded all around to the transverse-rib 

webs, are also able to be fabricated and this design can decrease out-of-plane bending at 

the connections. 

Chapter 2 selects a fatigue evaluation method for the longitudinal-rib to transverse-rib 

connection, based on the structural hot-spot stress approach. Since the longitudinal-rib 

to transverse-rib connections are complex shapes and have complex stress distributions 

that can change as the loading position moves, a nominal stress approach is hardly ap-

plicable. As the results of re-analysis of literature fatigue data, it was found that 

three-dimensional finite element analyses and the hot-spot stress approach with appro-

priate modification factors can evaluate the fatigue strength at joints where out-of-plane 

bending of thin plates occurs.  

 Chapter 3 investigates the critical loading conditions and the fatigue strength of the 

various connections. Connections with U-ribs, V-ribs and plate ribs as longitudinal ribs, 

and with slit and the non-slit transverse ribs were investigated. The shapes of V-ribs and 

plate ribs were also varied. The critical loading conditions were identified by the com-

bination of finite element analyses and the hot-spot stress approach. The analyses took 

account of rotations of principal stress directions around box welds and the moving of 

stress concentration points along weld toes. Fatigue evaluations under the critical load-

ing conditions clarified that applying non-slit connections instead of common slit 

connections can dramatically decrease the hot-spot stress ranges and increase the fatigue 

strength of the connections. 

  Chapter 4 describes the fatigue tests conducted on the connections. The fatigue load-

ing simulated the critical loading conditions. The hot-spot stress approach was 

confirmed to be applicable to the longitudinal-rib to transverse-rib connections. Fur-

thermore, the non-slit connections with V-ribs and plate ribs achieved the target fatigue 

performance, which is fatigue strength corresponding to 10
7
 cycles of the design load 

under the critical loading condition. However, it was also found that U-ribs and V-ribs 

did not have enough fatigue strength due to fatigue damage at the rib-to-deck joints. 

Therefore, orthotropic steel decks with the plate ribs and non-slit connections were 

proposed as suitable structures. 

  Chapter 5 evaluates the fatigue lives of the connections under actual traffic conditions 

by Monte Carlo simulations, since the critical loading conditions do not always occur. 

The simulation took account of transverse distributions of vehicle positions. It was 

found that the non-slit connections can achieve 100-year fatigue lives for almost all 

heavy traffic roads in Japan. 

  Chapter 6 summarizes the results and finding of this study. 
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Table 1-1 Orthotropic steel deck bridges of Japanese expressways (Mori, 2010) 

Location (Owner) Rib type 
Total length 

[km] 

Deck area 

[103m2] 

Average span length 

[m] 

City expressways 

(shown in (b) ) 

Total 230.2 2790 64.4 

Open rib 80.8 851 57.1 

Closed rib 149.4 1939 69.1 

Intercity expressway 

including near city region 

(NEXCO) 

Total 29.7 518 125.3 

Open rib 2.4 27 109.1 

Closed rib 27.3 491 127.0 

Links between two major islands 

(Honshu-Shikoku Bridge Expressway ) 

Total 26.0 466 232.1 

Open rib 0.0 0 0.0 

Closed rib 26.0 466 232.1 

Total 

Total 285.9 3774 72.8 

Open rib 83.2 878 57.9 

Closed rib 202.7 2896 81.5 

 

Table 1-2 Stress correction by thickness factor, '=(t/tref)
n  for plates thicker than tref 

 JSSC IIW 

Basic thickness tref 25 25 

Effective thickness teff t Max (t, 0.5L) 

Thickness exponent n   

(a) Cruciform and T joints 0.25* 0.3 (0.2) 

(b) Ends of longitudinal welds 0 0.3 (0.2) 

(c) Butt welds 0.25 0.2 (0.1) 

(d) BM, longitudinal welds, and attachments at plate edges 0 0.1 

*n=0 for non-load-carrying and fully penetrated load carrying cruciform joints with attached plate thick-

ness of ≦12 mm 
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Fig. 1-1 Fatigue cracks in orthotropic steel decks 
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Fig. 1-2 Ration of fatigue crack initiation points (reproduced from Mori 2010) 

 

 

 
 

Fig. 1-3 Fabrication procedures for orthotropic steel decks with bulb-ribs 
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Fig. 1-4 Longitudinal-rib to transverse-rib connections without upper scallop (Japan 

Road Association 2014) 
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Fig. 1-5 Longitudinal-rib to transverse-rib connections evaluated in Bruls (1991) 
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Fig. 1-6 U-rib to transverse-rib connections with inner attachments 

  

(b) U-rib to transverse-rib connection with inner stiffener (Suganuma and Miki 2007)

(a) U-rib to transverse-rib connection with bulkheads (Taskopoulos et al. 2003)
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Fig. 1-7 Plate-rib to transverse-rib connections (Fryba 1999) 
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Fig. 1-8 Estimated deformations of longitudinal and transverse-ribs 

 

(a) Flexural bending of ribs

(b) Mix of in-plane and out-of-plane deformations
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Fig. 1-9 Influence line of strain gauge 13 at the transverse rib web near to the slit end 

(Beales 1990) 
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Fig. 1-10 Transverse distribution of wheel units 
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2. Proposal of fatigue assessment approaches 

for orthotropic steel decks 

2.1. Introduction 

Conventionally, longitudinal ribs and transverse ribs have been designed as girders 

with deck plates as upper flanges. Therefore, in-plane bending of the girders and the 

corresponding membrane stress were considered by a nominal stress approach in old 

specifications (Japan Road Association 1980).  

In real situations, orthotropic steel decks are subjected to complex deformations. Or-

thotropic steel decks are composed of comparatively thin steel plates down to 6 mm and 

subjected to vehicle loads directly. The thin flexible steel plates easily deform in the 

out-of-plane direction, with local bending of deck plates, or torsion and distortion of the 

ribs. The deformed longitudinal ribs and transverse ribs are constrained by each other at 

the connections, and this constraint also induces local out-of-plane bending of the ribs.  

To evaluate fatigue of the connections where stress distributions are complex, a nom-

inal stress approach is not suitable. The nominal stress approach, in which nominal 

stress is the average stress of the cross section where the stress distribution is not dis-

turbed by the joints (Fig. 2-1a), is the most simple fatigue assessment procedure. 

However, nominal stress cannot be defined in the longitudinal-rib to transverse-rib con-

nection, since three-dimensional deformation causes complex stress distributions at the 

complex shape connections (Fig. 2-1b) 

In addition, hot spots, where local stress concentrations occur, can move along weld 

toes as loading positions move. As a rule, hot-spot locations can be determined by the 

macro stress direction and weld toe shapes. However, since deformations can change as 

the loading position moves, local stress directions also can change, and the result is 

moving of hot spots along weld toes (Fig. 2-2). For example, a hot-spot location is the 

side of the box weld at the joint between a U-rib and a slit transverse rib when a longi-

tudinal in-plane tension force acts on the U-rib, whereas the hot-spot location is the 

bottom of the box weld when out-of-plane bending about the longitudinal axis acts on 

the U-rib wall (Fig. 2-2a, b). Since the deformation of longitudinal-rib to transverse-rib 

connections can change as the loading position moves, hot spots are not fixed points 

(Fig. 2-2c). 

In this chapter, a more suitable fatigue assessment approach is investigated for fatigue 

assessment of longitudinal-rib to transverse-rib connections. To calculate the local stress 

at the connections which deform three-dimensionally, the applicability of hot-spot stress 

approach is investigated (Sec. 2.2). After that, a stress calculation equation is deter-

mined by taking account of two features, comparatively thin steel plates and 

out-of-plane bending stresses, which are known to affect the fatigue strength of ortho-

tropic steel decks (Sec. 2.3). The effects are investigated by using literature fatigue test 

results and finite element analyses. Finally, the corresponding fatigue design curve is 

selected from fatigue data for various types of models (Sec. 2.5). 
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2.2. Hot-spot stress applicability to longitudinal-rib to transverse-rib 

connections 

2.2.1. Determination of local stress and hot spots 

To evaluate fatigue of longitudinal-rib to transverse-rib connections where stress dis-

tributions are complex and hot-spot locations can move along the weld toes, structural 

hot-spot stress (hereinafter referred to as hot-spot stress) is expected to be applicable. 

The hot-spot stress approach can obtain geometrical stress concentrations and estimate 

fatigue strength without fatigue tests (Radaj 2006). The fatigue strength corresponding 

to hot-spot stress can be provided by one or a few lines in the S-N diagram regardless of 

the joint shape (DNV 2006; Hobbacher 2007). The applicability of hot-spot stress has 

been investigated for various fields: ship structures (Maddox 2002; Lotsberg and Sig-

urdssn 2006; Fricke 2010), tubular joints, and bridge structures (Miki 1994). 

In addition to the geometrical stress concentration caused by a joint itself, more de-

tails such as weld shapes can cause an additional stress concentration, which is the 

so-called notch stress. The notch stress can be calculated by the effective notch stress 

approach or other methods (Radaj 2006). However, calculating the hot-spot stress costs 

less than calculating the notch stress concentration, and it can have sufficient accuracy 

in the case that the weld toe conditions are as-welded. 

Furthermore, hot spots can be identified by the hot-spot stress approach even in the 

case that the hot spot moves along the weld toes by moving loading positions. In this 

study, hot-spot stresses were calculated by stress extrapolation methods, as shown in Fig. 

2-3, provided by the IIW recommendations shown in the following equations (Hob-

bacher 2007). 
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where  and its indexes refer to the surface stresses normal to the weld toes and the dis-

tances from the weld toes to the reference points. Equations 2-1a and b were used for 

the plate surface side (types A and C in Fig. 2-4) and the plate edge side weld toes (type 

B in Fig. 2-4). For the plate surface side weld toes, hot spots can be determined by cal-

culating the hot-spot stress distribution along the weld toes (Fig. 2-3a). Here, it should 

be noted that the actual weld toes are wavy-shaped weld toes and hot spots calculated 

by the procedure above is the engineering approach. 

 

 

 

2.3. Thickness and bending effects 

2.3.1. Previous studies 

Two features of longitudinal-rib to transverse-rib connections are thin steel plates and 

out-of-plane bending stress. These features should be taken into account for fatigue as-

sessment by the hot-spot stress approach. The hot-spot stresses have been confirmed to 

have certain accuracy for the assessment of longitudinal-rib to transverse-rib connec-

tions (Conner and Fisher 2006; Kozy et al. 2011; Aygul et al. 2012; Miki and Suganuma 
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2014; Zhang et al. 2015). Because the two features are known to affect fatigue strength 

and fatigue lives, they enhance the accuracy, as stated in the following sentences. 

First, the thickness effect, which has been studied over the decades as part of the size 

effect of fatigue, can also affect the fatigue strength of longitudinal-rib to transverse-rib 

connections, because longitudinal-rib to transverse-rib connections are composed of rel-

atively thin steel plates of 6-16 mm. Many specifications and recommendations take 

account of fatigue strength reductions of plates thicker than the basic thickness of 25 

mm in IIW and JSSC recommendations (Hobbacher 2013; Japanese Society of Steel 

Construction 2012). Conversely, some investigations found that the thickness effect ex-

tends to plates thinner than 25 mm. As a result of fatigue tests under bending loads and 

of crack propagation analyses under axial as well as bending loads, Miki (1987) showed 

that the thickness effect with an exponent of approximately 0.25 was suitable for cruci-

form and T joints of 9–75 mm thickness. As a result of analyzing experimental data in 

the literature, Gurney (1995) showed the thickness effect with a less severe exponent 

than 0.25 extended at least to a thickness of 10 mm. Kihl and Sarkani (1997) conducted 

constant and random amplitude fatigue tests on cruciform joints of 6–25 mm thickness, 

and they concluded that the rule of the thickness effect with an exponent of 0.25 is con-

servative for low-stress high-cycle conditions (greater than 10
5
 cycles) compared with 

the test results. 

In addition to the thickness effect on thinner plates, thickness exponents should also 

be determined or selected from established specifications or recommendations. In the 

early stages of size effect investigations using cruciform and T joints, a thickness expo-

nent of 0.25 was proposed. In the present recommendations, various thickness 

exponents are provided, such as those shown in Table 1-2 (Hobbacher 2013; Japanese 

Society of Steel Construction 2012). However, applicability of the recommendation to 

the hot-spot stress approach has not been clarified. 

Second, it is known that out-of-plane bending, as compared to axial loads, can in-

crease fatigue strength or fatigue lives of welded joints. To take account of the bending 

effect, previous studies have proposed reduction factors for bending stress, such as 0.6 

and 0.8 for the nominal stress approach (Lotsberg and Sigurdsson 2006; Japanese Soci-

ety of Steel Construction 2012, respectively), and 0.7 for local stress approaches 

(Fischer and Fricke 2014). Since out-of-plane bending stress can account for more than 

half of the stresses near longitudinal-rib to transverse-rib connections, the bending effect 

should be taken into account, but it has not been confirmed to be applicable to the 

hot-spot stress approach. 

 

2.3.2. Analysis of fatigue data literature 

Coefficients of the thickness and the bending effects in terms of hot-spot stress were 

investigated by using fatigue test results found in the literature. Hot-spot stresses were 

computed by consistent finite element analyses in this study to minimize the influences 

of computation environment differences, such as finite element mesh sizes. The thick-

ness and the bending effects were investigated by fatigue data of out-of-plane gusset 

and cruciform joints, corresponding to the types A and C, respectively, since enough fa-

tigue data were available. Then the fatigue design curve was selected to provide a safe 

estimation for all types of fatigue data including the type B component models and 

structural models, which can have fatigue strengths that are different and smaller in 

many cases compared to component models (e.g., Anami 2000). 
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(1) Literature fatigue test results 

Fatigue test results of non-load-carrying cruciform and out-of-plane gusset joints with 

as-welded conditions were corrected to investigate thickness and bending effects 

(Kamakura et al. 1979; Shimokawa et al. 1985; Maddox 1987, 2011; Miki 1987; 

Vosikovsky 1989; Yagi 1991; Sakano 1994, 2004; Anami 2001; Huo 2005; Park 2008; 

Wang 2009; Araki 2012; Mori 2012; Kim 2013; Sakino 2015). Table 2-1 shows the 

numbers of fatigue data sets in a matrix of thickness and model types taken from the lit-

erature. Fatigue data included cruciform joints with a thickness from 6 to approximately 

100 mm tested under both axial and bending loads. The available fatigue data of 

out-of-plane gusset joints tested under axial loads were smaller in number than those of 

cruciform joints and limited to data of plates thinner than 25 mm. However, the data 

were enough to investigate the thickness effect for the longitudinal-rib to transverse-rib 

connections of orthotropic steel decks, which are normally composed of 6-16 mm 

plates. 

  Table 2-2 shows a summary of the fatigue data, and more details of the fatigue data 

are shown in Appendix-A Table A-1–4 and Fig. A-1–7. In this study, fatigue data sets 

with only fatigue lives shorter than 10
6
 cycles were not used in this study, because those 

fatigue data sets may not be enough to estimate fatigue strength at 2.0 × 10
6
 cycles. The 

load types were axial, with 4- and 3-point bending cyclic loads with stress ratios of zero 

or larger than zero. Definitions of fatigue failure were complete failure in all literature 

data of the component models. Though the materials of fatigue data varied from mild to 

high strength steels such as HT780 or HT80 (Shimokawa 1985; Anami 2001), the effect 

of material strength on the fatigue strength of welded joints was not significant. 

 

(2) 2.0 × 10
6
 fatigue strength determination for thickness effect investigation 

The mean fatigue strength at 2.0 × 10
6
 cycles in terms of hot-spot stresses (f,h) was 

determined based on the IIW recommendation (Hobbacher 2007). The fatigue strengths 

were calculated with linear regression of hot-spot stress data calculated by multiplying 

nominal stresses written in the literature by the stress concentration factors. The linear 

regression regarded fatigue lives as dependent variables. Since short fatigue lives may 

have different phenomena from high cycle fatigue, test results under high stress ranges 

that could cause shorter fatigue lives than 10
5
 cycles were eliminated from analyses in 

this study. On the other hand, it was indicated that run-out data should be used to esti-

mate the mean curves of test results in the S-N diagram (Marquis 2002). All fatigue data 

sets were analyzed without run-out data, which was not included in some fatigue data 

sets. Such analyses provide conservative estimations of the mean curves. 

 

 

(3) Hot-spot stress computation by finite element analyses 

The hot-spot stresses were computed by elastic finite element analyses using 

ABAQUS 6.13. An elastic modulus of 205 kN/mm
2
 and Poisson’s ratio of 0.3 were set 

in the analyses. 

Component specimens and their welded joints were modeled by 6-node solid ele-

ments (Fig. 2-5a, b). One-eighth and one-fourth symmetric models were applied for 

axial and bending load tests, respectively. The solid element sizes were 0.1 times the 

main plate thicknesses. Inner un-welded surfaces of fillet welded joints were also mod-

eled as surfaces where the main and attached plates could be separated without 
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contacting each other. Thus, two plates could be overlapped in these models, though this 

does not happen in real situations. However, the welded joints can have weld root gaps 

and the gaps can keep two plates separated in a real situation. 

  Hot-spot stresses were computed as structural stresses by the stress extrapolation 

methods provided by the IIW recommendations, as shown in Equations 2-1a and b 

(Hobbacher 2007).  

 

2.3.3. Existence of thickness effect on thicknesses less than 25 mm 

The differences between the effects of thicknesses in terms of hot-spot stress and 

nominal stress first were investigated. Fig. 2-6a and b shows graphs of the stress con-

centration factors of cruciform, T, and out-of-plane gusset joints as the vertical axes and 

the thicknesses and the width-thickness ratios of the component joint models as the 

horizontal axes. More detailed results are shown in Appendix-A Table A-5–7. The stress 

concentration factors of cruciform and T joints were almost 1.0 regardless of the thick-

ness and the width-thickness ratios. Therefore, analyses of thickness and bending effects 

in terms of hot-spot stress can give similar results to those in terms of nominal stress. 

On the other hand, the stress concentration factors of out-of-plane gusset joints were 

likely to increase as the width-thickness ratio became larger, though only a small corre-

lation existed between stress concentration factors and thicknesses. Therefore, analyzing 

the thickness effect by the nominal stress approach would include the noises from mod-

el dimensions, and the hot-spot stress approach can eliminate the noises. In addition, 

since the thick plate specimens tended to have a small width-thickness ratio, in which 

the stress concentration factors were comparatively small, and since actual structures 

would have larger width-thickness ratios, the fatigue evaluation for thick plate speci-

mens by the nominal approach might not be safe. 

Fig. 2-7a shows the relations between corrected thicknesses and fatigue strengths of 

cruciform joints, and their linear regression lines. More detailed results are shown in 

Appendix-A Table A-5–7 and Fig. A-8, 9. The corrected thicknesses were determined by 

the following equations (Gurney 1989, 1999). 
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Here t' is the corrected thickness; t1, t2 are the main plate and attached plate thicknesses, 

respectively, and a is the weld leg length. 

The thickness effects on axially loaded cruciform joints and bending loaded T joints 

existed down to at least 6-mm thickness with exponents of 0.23 and 0.35, respectively. 

The result that the thickness effect on cruciform joints can be extended to relatively 

thinner plates was also suggested in previous research (Miki 1987; Gurney 1995; Kihl 

and Sarkani 1997). The steeper thickness exponents of the bending loaded T joints were 

also obtained by Yagi (1991) with fatigue tests on geometrically similar component 

models under both axial and bending loads. From Fig. 2-7a and previous study results, 

the thickness effects in terms of hot-spot stress and an exponent of 0.25 could be ex-

tended to 6 mm for cruciform joints. Though the thickness exponents of bending loaded 

T joints were steeper than 0.25, a lower exponent applied to plates thinner than the basic 

thickness can provide safe estimations. The corrected thickness indicated in Equation 
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2-2 can be applied to determine the thickness factor, but simply using a main plate 

thickness equal to or larger than the corrected thickness can give safe fatigue estima-

tions. 

Fig. 2-7b shows the relations between thickness and fatigue strength of out-of-plane 

gusset joints. Thickness effects on axial and bending loaded joints existed down to 8 and 

12 mm thicknesses, respectively, and the exponents were 0.28 and 0.35, respectively. 

The existence of the thickness effect in terms of nominal stress has already been indi-

cated in the literature (Sakano 1994, 2004; Hobbacher 2007), and can be applied to 

out-of-plane gusset joints with relatively thicker plates. As is similar to cruciform and T 

joints, thickness effects in terms of hot-spot stresses and an exponent of 0.25 could be 

extended to plates thinner than 25 mm.  

In this study, hereinafter, the thickness exponent of 0.25 was applied to plates with a 

thickness of 6-25 mm. However, it should be noted that more investigation is required 

to apply that rule for general fatigue design, since fatigue data was limited in this study. 

 

2.3.4. Fatigue strength increase of bending stress 

Fig. 2-8 compares fatigue data of axially and bending loaded joints with a thickness 

of 6-25 mm. The vertical axis is the hot-spot stress modified by the thickness effect fac-

tor (t/25)
0.25

. The figure does not include fatigue data of plates thicker than 25 mm, 

which are rarely used for orthotropic steel decks and can cause non-conservative fatigue 

estimations by thickness exponents of 0.25 according to Fig. 2-7. Fig. 2-8 also shows 

95% survival curves connected to constant amplitude fatigue limits. To compare axial 

and bending loaded joints, the axial-bending ratio is defined as follows. 

 










approach) stressspot -(hot /

approach) stress (nominal     /
ratio

95% h, bend,95% h, axial,

95% bend,95% axial,




 

2-3a 

2-3b 

 

where axial, 95% and bend, 95% are the 95% survival fatigue strength or constant am-

plitude fatigue limits in terms of nominal stress for axial and bending loads, respectively, 

and axial, h, 95% and bend, h, 95% are those in terms of hot-spot stress. Bending factors 

were investigated based on these ratios. 

In the comparison of the 95% survival curves, the reduction factor of 0.8 for bending 

stresses was applicable to the hot-spot stress approach. The axial-bending ratios of cru-

ciform joints were 0.74 and 0.76 at 2.0 × 10
6
 cycles with constant amplitude fatigue 

limits, respectively. These ratios indicate that the reduction factor of 0.8 for bending 

stress, suggested by JSSC (2012), can give safe fatigue estimations in the hot-spot stress 

approach. The axial-bending ratios of out-of-plane gusset joints were 0.68 and 0.86 at 

2.0 × 10
6
 cycles and a constant amplitude fatigue limit, respectively. Though the axi-

al-bending ratio at constant amplitude limit was larger than 0.8, the ratio of the JSSC-E 

class to the bending loaded model data in Fig. 2-8b at a constant amplitude fatigue limit 

(84 N/mm
2
) was 0.74. Here, the JSSC-E class is the fatigue design curve suitable for the 

hot-spot stress approach by taking account of thickness and bending effects, as de-

scribed in the following section. In addition, a bending stress reduction factor of 0.8, 

suggested by JSSC (2012), was selected and applied in this study. 
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2.4. Fatigue design curve 

2.4.1. Re-analysis of fatigue data literature 

(1) Fatigue test results in the literature 

The selection of a fatigue design curve for the hot-spot stress approach while taking 

thickness and bending effects into account was investigated by using fatigue data in-

cluding component and structural models with types A, B and C hot spots. Since the 

fatigue strength of welded joints depends on joint types even in the hot-spot stress ap-

proach, and since types A, B and C hot spots appear in the longitudinal-rib to 

transverse-rib connections, determination of fatigue design curves required the fatigue 

data of the three types of hot spots. In addition, since the fatigue strength of structural 

models can be lower than those of component models, the fatigue data of structural 

models were used. Those fatigue data were limited in thicknesses, so their thickness ef-

fects were not investigated in this study. 

Table 2-2 shows a summary of the fatigue data (Kamakura et al. 1979; Shimokawa et 

al. 1985; Maddox 1987, 2011; Miki 1987; Vosikovsky 1989; Yagi 1991; Sakano 1994, 

2004; Anami 2001; Huo 2005; Park 2008; Wang 2009; Araki 2012; Mori 2012; Kim 

2013; Sakino 2015, Yagi 1991; Miki 1994; Schumacher 2006; Yamaoka 2010; Kim 

2013; Cheng 2015). Each literature source used different crack lengths as the fatigue 

failure, Nf, as shown in Table 2-2. 

 

(2) Hot-spot stress computation by finite element analyses 

The determination of hot-spot stresses of component models were described above. 

The structural specimens were modeled by 4-node shell elements (Fig. 2-5c). The shell 

elements were applied to reduce the numbers of degree of freedom and computation 

costs. Welded joints were modeled with increased thicknesses to simulate the stiffness 

based on previous research, as shown in Fig. 2-5d (Machida 1992). The sizes of the 

shell elements were 0.1 times the main plate thicknesses near the evaluated weld toes 

and the sizes of larger elements were up to 50 mm far from the weld toes. Full models 

were used except for half symmetric models for ship brackets. 

Before analyzing the fatigue data, the difference of the hot-spot stresses between sol-

id and shell element results was investigated. Fig. 2-9 shows stress extrapolations for 

hot-spot stresses based on solid and shell element results for axially loaded cruciform 

joints and bending loaded out-of-plane gusset joints. The errors of hot-spot stresses 

based on shell element results from those based on solid element results were smaller 

than 3%. Therefore, it is possible to evaluate hot-spot stresses computed by using both 

element results at the same time. However, the surface stresses of the solid element re-

sults were larger than those of the shell element results in the area within 0.3t. Some 

stress concentrations might be due to local geometries, such as weld toe shapes, and 

such local stress concentrations could not be computed by shell elements. The concept 

of the hot-spot stress approach is to obtain the stress concentration factor not by local 

geometries but by joint detail (structural stresses). 

 

2.4.2. Applicability of JSSC-E class 

  Fig. 2-10 shows the fatigue strength of the literature data and fatigue class JSSC-E 

provided by the JSSC recommendation. The vertical axes of Fig. 2-10a and b are the 

hot-spot stresses and the hot-spot stresses factored by the equations below. 
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where h, m and h, b are membrane and bending components of hot-spot stresses, re-

spectively, and h, obv and h, rev are hot-spot stresses calculated based on obverse and 

reverse surface stresses. As shown by the results of the previous section, the thickness 

factor and the bending reduction factor were determined to (t/25)
0.25

 and 0.8. The thick-

ness factor was applied to any type of joints of all thickness ranges, though JSSC 

recommendations provide the thickness factor for only cruciform and butt welded joints 

with plates thicker than 25 mm. Fig. 2-10b shows the fatigue strength of plates thinner 

than 25 mm only, since the thickness exponents of 0.25 can be non-conservative for 

plates thicker than 25 mm. Such plates are rarely applied to orthotropic steel decks. 

  Almost all fatigue data satisfied fatigue class JSSC-E in Fig. 2-10b. Though fatigue 

data sets had 95% survival curves with 77 N/mm2 at 2.0 × 10
6
 cycles, which is 4% 

smaller than that of JSSC-E class, fatigue data except for type C component models 

were plotted above the JSSC-E curve. In addition, the 95% survival curve of each type 

model (e.g., type A component model) was above the JSSC-E class, except the 95% 

survivals of type C component models were across the JSSC-E curve and located below 

the JSSC-E curve at approximately ≦1.0 × 10
6
 cycles. However, the objective of this 

study, 100-year fatigue strength, is >1.0 × 10
6
 cycles. Therefore, the fatigue evaluation 

using the hot-spot stress modified by Equation 2-4a and the fatigue design curve of 

class JSSC-E is applicable to fatigue assessment of longitudinal-rib to transverse-rib 

connections. It should be noted that the abovementioned type C component model re-

sults and some of the in-plane gusset joint results were plotted below the constant 

amplitude fatigue limit of JSSC-E. 

  Applying the thickness and the bending stress reduction factors enhanced the fatigue 

assessment. The width between the lower and upper 95% survival curves of fatigue data 

in terms of factored hot-spot stresses was 30% smaller than that in terms of hot-spot 

stresses. However, some type B component model results were in the excessively high 

fatigue strength region even after the factors were applied (Fig. 2-10b). Though it is a 

safe evaluation, additional investigation is needed to understand these results. 

 

 

 

2.5. Summary 

In this chapter, a fatigue assessment approach was determined for longitudinal-rib to 

transverse-rib connections. To calculate the local stresses at the connections that deform 

three-dimensionally, applicability of the hot-spot stress approach was investigated. After 

that, a stress calculation equation was determined by taking account of two features of 

orthotropic steel decks. The features are comparatively thin steel plates and out-of-plane 

bending stresses, which are known to have an effect on fatigue strength. The effects 

were investigated by using the literature of fatigue test results and finite element anal-

yses. Finally, a corresponding fatigue design curve was selected from fatigue data 

including various types of models. The following are the conclusions obtained. 
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1) The hot-spot stress approach can be applied for fatigue assessment of longitudi-

nal-rib to transverse-rib connections, where three-dimensional deformations are 

caused and hot spots move as loading positions move. 

2) A thickness factor with an exponent of 0.25 and bending stress reduction factor of 

0.8 can be applicable to the hot-spot stress approach. The thickness effect could be 

extended to plates thinner than 25 mm. In addition, the width between the lower and 

upper 95% survival curves of fatigue data in terms of factored hot-spot stresses was 

30% smaller than that in terms of hot-spot stresses.  

3)  JSSC-E class can provide safe estimations of fatigue strength and fatigue lives for 

the factored hot-spot stresses, except for type C hot spots under a relatively high 

stress range approximately equal to or higher than 100 N/mm
2
 and type B hot spots 

under stress ranges lower than the constant amplitude fatigue limit of JSSC-E class. 
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Table 2-1 Numbers of literature fatigue data sets for each model and each thickness 

Model Type Load 
Thickness (tmin-tmax means tmin<t≦tmax) [mm] 

6-10 10-16 16-25 25-40 40-63 63-103 

Component A Axial 7 2 8 3 1 4 

 A Bending 1 2 3 3 3 4 

 B Axial 4 1 - - - - 

 C Axial 3 3 1 2 - - 

 C Bending - 2 1 - - 2 

Structure A Axial 1 - 1 - - - 
 A Bending - - - - - - 
 B Axial 1 - - - - - 
 C Axial - - - - - - 
 C Bending 2 3 1 - - - 

*Non-load-carrying joints 
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Table 2-2 Summary of literature fatigue data 
Reference Model HS Stress t [mm] Failure definition 

Component joints      

Shimokawa (1985) Out-of-plane gusset A Membrane 30 Complete failure 

Anami (2000) Out-of-plane gusset A Membrane 16 Complete failure 

Huo (2005) Out-of-plane gusset A Membrane 8 Complete failure 

Park (2008) Out-of-plane gusset A Membrane 20 Complete failure 

Wang (2009) Out-of-plane gusset A Membrane 8 Complete failure 

Maddox (2011) Out-of-plane gusset A Membrane 30 Complete failure 

Araki (2012) Out-of-plane gusset A Membrane 12 Complete failure 

Mori (2012) Out-of-plane gusset A Membrane 12 Complete failure 

Kim (2013) Out-of-plane gusset A Membrane 10 Complete failure 

Sakano (1994) Out-of-plane gusset A Bending 25 Complete failure 

 Out-of-plane gusset A Bending 75 Complete failure 

Sakano (2004) Out-of-plane gusset A Bending 75 Complete failure 

Araki (2012) Out-of-plane gusset A Bending 12 Complete failure 

Kim (2013) Out-of-plane gusset A Bending 14 Complete failure 

Sakino (2015) Out-of-plane gusset A Bending 15 Complete failure 

Yamada (1984) In-plane gusset B Membrane 10 20 mm (2.0)
 a
 

Miki (1993) Web gusset B Membrane 9 40 mm (4.4)
 a
  

Kondo (2002) In-plane gusset B Membrane 10 20 mm (2.0)
 a
  

Fricke (2006) Scallop B Membrane 12 No info. available 

Kamakura (1979) Cruciform C Membrane 9 Complete failure 

 Cruciform C Membrane 20 Complete failure 

Maddox (1987) Cruciform C Membrane 13 Complete failure 

 Cruciform C Membrane 50 Complete failure 

 Cruciform C Membrane 100 Complete failure 

Yagi (1991) Cruciform C Membrane 10 Complete failure 

 Cruciform C Membrane 22 Complete failure 

 Cruciform C Membrane 40 Complete failure 

 Cruciform C Membrane 80 Complete failure 

Miki (1987) Cruciform C Bending 9 Complete failure 

 Cruciform C Bending 16 Complete failure 

 Cruciform C Bending 50 Complete failure 

Vosikovsky (1989) Cruciform C Bending 16 Complete failure 

 Cruciform C Bending 26 Complete failure 

 Cruciform C Bending 52 Complete failure 

 Cruciform C Bending 78 Complete failure 

 Cruciform C Bending 103 Complete failure 

Yagi (1993) Cruciform C Bending 22 Complete failure 

 Cruciform C Bending 40 Complete failure 

 Cruciform C Bending 80 Complete failure 

      

Structure models      

Yagi (1991) Bracket A Membrane 22 100 mm (4.5)
 b

  

Kim (2013) Web gusset A Membrane 9 30 mm (3.3)
 b

  

Yamaoka (2010) Orthotropic steel deck B Membrane 9 40 mm (2.5)
 a

  

Schumacher (2006) Pipe to pipe C Bending 12.5 Through-thickness 

 Pipe to pipe C Bending 20 Through-thickness 

Cheng (2015) Pipe to pipe C Bending 8 Through-thickness 

 Pipe to pipe C Bending 10 Through-thickness 

 Pipe to pipe C Bending 12 Through-thickness 

HS: Hot-spot type, Stress: stress gradient over thickness – Membrane (M) or Bending (B), 
a
 twice of plate edge crack length at fatigue failure (c / t1), 

b
 surface crack length c at fatigue failure (c / t1) 
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Fig. 2-1 Difficulty of nominal stress approach application to longitudinal-rib to trans-

verse-rib connections 

 

 

 

 

 
Fig. 2-2 Move of the hot-pot at welded joints between U- and transverse-ribs 
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Fig. 2-3 Hot-spot stress calculations 

 

 

 

 

 
Fig. 2-4 Weld toe types 
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Fig. 2-5 Finite element models 
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Fig. 2-6 Influence of thickness and width-thickness ratios on stress concentration factors 
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Fig. 2-7 Relations between thicknesses and fatigue strength 
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Fig. 2-8 Fatigue strength comparison between axially- and bending-loaded joints 
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Fig. 2-9 Comparison of solid elements and shell elements 
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Fig. 2-10 Fatigue strength in terms of hot-spot stress and factored hot-spot stress 
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3. Investigations of fatigue resistant 

structures for orthotropic steel decks 

3.1. Introduction 

  Orthotropic steel decks, which have light weight, are placed in many long-span 

bridges and city expressways for renewal of deteriorated reinforced concrete decks. 

However, orthotropic steel decks have serious fatigue problems that require improve-

ment. Fatigue cracks initiated from longitudinal-rib to transverse-rib connections are the 

largest in number and account for approximately 40% of all cracks, according to inves-

tigation of Japanese expressway bridges under service (Mori ed. 2010). 

  Longitudinal-rib to transverse-rib connections without scallops and slits are expected 

to have high fatigue strength. The upper scallops were introduced on transverse-rib 

webs to avoid overlapping of longitudinal-rib to transverse-rib and rib-to-deck welds. 

However, afterward, eliminating scallops was recommended based on previous research 

(Miki et al. 1995). On the other hand, lower slits (or cut outs) were introduced for effi-

cient fabrication of longitudinal-rib to transverse-rib connections with continuous 

longitudinal-ribs (Seeger 1964). Eliminating fatigue cracks around lower slits has been 

attempted by changing slit shapes and/or adding attachments such as bulkheads and in-

ner stiffeners (Ohashi et al. 2000; Taskopoulos et al. 2003, Conner and Fisher 2006, 

Miki and Suganuma 2014; Hanji et al. 2013). Longitudinal-rib to transverse-rib connec-

tions without scallops and slits (hereinafter, non-slit connections) have also been 

reported to be capable of reducing stress on the connections (Kolstein 2001; Katsumata 

et al. 2000). The slits can be eliminated by managing manufacturing techniques, such as 

checking weld root gaps. 

  However, previous studies of longitudinal-rib to transverse-rib connections did not 

sufficiently consider the moving loading position. The positions of a vehicle moving in 

the longitudinal direction are transversely distributed (Leonard 1969). Furthermore, 

critical loading positions, which are the positions causing maximum and minimum 

stresses on longitudinal-rib to transverse-rib connections, are a distance away from the 

evaluated connections (Miki et al. 1995). Therefore, fatigue tests or fatigue assessments 

without taking account of the critical loading positions can result in incorrect fatigue 

strength and crack initiation points compared to those of actual bridges. The critical 

loading positions have not been clarified except for some U-rib slit connections 

(Suganuma and Miki 2006).  

  From the background above, the following objectives of this chapter were estab-

lished. 

1) Clarify critical loading conditions that are the most severe for the fatigue of longitu-

dinal-rib to transverse-rib connections. 

2) Evaluate and compare fatigue strengths of slit and non-slit connections under the 

critical loading conditions. 
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3.2. Models and analysis method 

3.2.1. Connection models 

  The fatigue strengths of 32 models with U-ribs, V-ribs, and plate ribs were evaluated 

(Table 3-1). The connections are named and followed by two characters that indicate the 

rib type and slit/non-slit condition, such as connection US indicating the U-rib and the 

slit connection. The fatigue assessments used deck panel models (Fig. 3-1 to Fig. 3-4), 

with the each type of connections. The evaluated connections in the deck panel models 

were the intersections between each longitudinal rib and the center transverse ribs, 

though it should be noted that deformations of longitudinal ribs adjacent to main girders 

could be significantly affected by boundary conditions at deck plate ends supported by 

main girders, which are different from actual boundary conditions. The deck panel 

models were actual-size partial models composed of main girders, three or more longi-

tudinal ribs, and three or four transverse ribs. The deformation of these structural 

members should be taken into account when the stress conditions of longitudinal-rib to 

transverse-rib connections are evaluated (Suganuma and Miki 2007). The appropriate 

stress conditions of longitudinal-rib to transverse-rib connections are considered diffi-

cult to obtain by using smaller models, such as models with only one transverse rib. 

  Fig. 3-1 shows the shapes of the deck panel models and the connections with 

closed-section longitudinal ribs. Connections US, UN, VS, and VN were evaluated to 

investigate the effect of rib shapes and the slit on the fatigue strength of the connections. 

connections VN1 through VN6 were evaluated to investigate the dimensions of V-ribs on 

the fatigue strength of the connections. The cross section of the U-rib and its slit detail 

were decided for a common cross section applied to orthotropic steel decks in Japan and 

the recommended standard detail, respectively (Japan Road Association 2014). The 

V-rib cross section was decided to have the same radius as in the bending plate process 

and approximately the same section area as that of the U-rib. Connection VN was used 

to investigate the effect of cross sections on rib distortions and distortion-induced stress 

on longitudinal-rib to transverse-rib connections indicated in previous studies (Leherke 

1997; Delesie et al. 2008; Katsumata et al. 2000).  

  Fig. 3-2 to Fig. 3-4 show shapes of the deck panel models and the connections with 

open-section longitudinal ribs. Connections PS, PC and PN were evaluated to investi-

gate the effects of the slit on the fatigue strength of the connections. Connections PN10–

PN29 were evaluated to investigate the effects of plate rib and transverse rib dimensions 

on the fatigue strength of the connections. The plate rib cross sections of  connections 

PS, PC, and PN were decided to have approximately the same cross section modulus as 

a commonly used bulb rib with 230-mm height and 11-mm thickness, where the effec-

tive width of the deck plates was taken into account for the cross sections. The slit detail 

of connection PS was based on the recommended standard detail with its radius en-

larged to 45 mm, which could improve fatigue strength according to investigations of 

the Metropolitan Expressway in Japan (Mori ed. 2010). 

  Inner diaphragms were installed in the deck panel models with the U- and the V-ribs 

to simulate actual structural conditions. Diaphragms are installed at the longitudinal 

connections of actual structures for protection against corrosion. In this study, the effect 

of inner diaphragms on fatigue strength was also investigated, since it can increase 

stresses on longitudinal-rib to transverse-rib connections (Katsumata et al. 2000). 

  Longitudinal-rib span lengths were decided based on common lengths of actual 
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structures in Japan. The span lengths of the U- and the V-ribs were taken as the upper 

limit length for the standard orthotropic steel deck described in the recommendation for 

fatigue designs of steel road bridges (日本道路協会 2002). The common span length 

of open cross-sectional longitudinal ribs in Japan is 1250-2000 mm, and so the span 

length of the plate-ribs was taken as two-thirds of that of the U-rib and the V-ribs in or-

der to make the total lengths of all deck pane models equal. 

  The weld leg length was taken as 6 mm, except the length was 8 mm for joints be-

tween the plate ribs and the non-slit transverse ribs. The 8-mm length was used to keep 

adequate weld throats against enlarged 2-mm weld root gaps for efficient assembling of 

connection PN. 

  Though surfacing has been known to affect stresses of orthotropic steel decks, it was 

neglected in this study due to the uncertainty of its mechanical properties for finite ele-

ment analyses. The surfacing would decrease the stress of orthotropic steel decks up to a 

certain temperature. Therefore, deck panel models without surfacing result in safe fa-

tigue evaluations. 

 

3.2.2. Evaluated weld toes 

  Fig. 3-5 shows evaluated weld toes, where stresses would be concentrated, to be 

evaluated for fatigue assessment of longitudinal-rib to transverse-rib connections. Nu-

merous hot spots along weld toe lines mean somewhere on the toe line will be a hot spot. 

Weld toe numbers of 1 and 2 were given to the transverse- and longitudinal-rib side 

weld toes, respectively, of welded joints between longitudinal and transverse ribs. In the 

case of connection PS, weld toe numbers of 3 and 4 were given to the transverse rib and 

deck plate side weld toes, respectively, of welded joints between the transverse rib and 

the deck plate. It should be noted that weld toe 4 has almost no fatigue cracks according 

to investigations in the Japanese expressways. In the following descriptions, weld toes 

are named as the connection name combined with two numbers indicating the evaluated 

part number (Fig. 3-5a–d) and weld toe number (Fig. 3-5e–k), such as weld toe US-31 

indicating hot spot 1 in evaluated part 3 of connection US. 

 

3.2.3. Loads 

  Fig. 3-6 shows the load model and positions for stress analyses. The load model of 

100 kN, uniformly distributed on the loading area simulating a double tire, was decided 

based on a fatigue design load (T load) specified in the Specification for Highway 

Bridges (Japan Road Association 2014). The T load is one axle, which simplifies the 

rear tandem axle of trucks. This study used the simplified load model to clarify relations 

between load positions and hot-spot stresses of evaluated connections. 

  The load position, which means the center of the double tire load where no loading 

was put, was moved in the longitudinal and transverse directions. By using the coordi-

nate system with x and y for the longitudinal and transverse directions, respectively, and 

the origin at the middle of the center transverse ribs of the models, loads were posi-

tioned at x=-1200, -1000, …, +1200 mm of each lane at y=-800, -640, …, +800 mm in 

the case of the deck panel models with connections US, UN, and VN, and x=-800, -700, 

…, +800 mm of each lane at y=-800, -640, …, +800 mm in the case of the deck panel 

models with connections PS and PN. 

 



3. Investigations of fatigue resistant structures for orthotropic steel decks 

46 

 

3.2.4. Finite element analysis conditions 

  Elastic finite element analyses were conducted by using ABAQUS 6.13 with the fol-

lowing conditions. Finite element models were composed of 4-node shell elements with 

reduced integration, as shown in Fig. 3-7a. The mechanical properties of steel were 205 

kN/mm
2
 for the elastic modulus and 0.3 for Poisson’s ratio. Boundary and loading con-

ditions were simply supported main girders with pressure on the deck plates. 

  The sizes, shapes, and applied thicknesses of shell elements around hot spots were 

controlled to compute the stress concentration at welded joints. The elements were 

shaped as substantially rectangle with sizes equal to or smaller than 0.2 times thick-

nesses, as shown in Fig. 3-7b. In the case that hot spots were at the plate edge, 2 mm 

was applied to the element sizes. The thicknesses at welded joints were increased based 

on previous research to simulate increased stiffness, as shown in Fig. 3-7c (Machida 

1992). The other parts of the deck panel models were meshed at a relatively coarse size 

up to 100 mm. Since only the evaluated parts were fine-meshed, the deck panel models 

of connection PS and PN had different meshes, but both models were geometrically the 

same. 

  No imperfections, including welding residual stresses and geometrical imperfections, 

were input in the finite element models. Not including welding residual stresses, which 

were assumed as tension stresses near yielding stresses, means that the effect of the 

stress ratio on fatigue strength was small. 

 

3.2.5. Hot-spot stress computation procedures 

  Hot-spot stresses were computed as structural stresses by stress extrapolations which 

took account of thickness and bending effects by the following equations, as discussed 

in the previous chapter. 
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where Kt and Kb are factors of thickness and bending effects on fatigue strength, h,m 

and h,b are membrane and bending components of hot-spot stresses, and h,obv and h,rev 

are hot-spot stresses based on evaluated (obverse) and reverse surface stresses. Hot-spot 

stresses based on surface stresses were calculated as the following equations. 

 










mm 12mm 8mm 4

0.14.0

33

67.067.1






tt

h
 

3-2a 

3-2b 

 

where  on the right side of the equation is surface stress of the reference point, perpen-

dicular to the weld toe lines, and the subscripts of  mean the distance from the weld 

toes to the reference points. Equation 3-2a was applied for types A and C hot-spots, and 

Equation 3-2b for type B hot spots, as shown in previous chapter, Fig. 2-4. 
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  Fig. 3-8 shows the procedure to determine the hot spots with the weakest fatigue 

strength. The procedure comprises the following: determining the characteristic stresses 

of each hot spot for all loading cases (Fig. 3-8b–e), determining the critical loading po-

sitions causing maximum and minimum hot spot stresses, and hot-spot stress ranges of 

each hot spot (Fig. 3-8f, g), determining the weakest fatigue strength hot spot (Fig. 3-8h, 

i) of the connections. 

  Fig. 3-8c and d show the procedure to determine the characteristic stresses, which are 

the maximum and minimum value of hot-spot stresses along the weld toe line. The re-

sults of PN-21 are shown in the figure as an example. The hot spots were composed of 

several nodes in the finite element model, so that hot-spot stresses were not a unique 

value for the hot spot but can be calculated at several nodes. Here, the hot-spot stresses 

at the nodes were modified for the bending and the thickness effects by Equation 3-1a. 

Furthermore, the hot-spot stress distributed along the weld toe line, and the nodes hav-

ing the maximum and minimum hot-spot stresses (hereinafter, called characteristic 

stresses) of the weld toe changes as the load position moves (Fig. 3-8c, d). Hence, the 

characteristic stresses of the weld toe can be missed if the evaluated nodes are fixed. To 

take account of the distribution change, the characteristic stresses were searched along 

the weld toe line for each loading case. The following descriptions show the procedure 

to determine the characteristic stresses with numerical expressions. Let pos=1–n be the 

loading cases and node=1–m be the node numbers composing the evaluated weld toe 

lines, and then the hot-spot stress of each node for each loading case is expressed as the 

following equations. 

 

mnhnhnh

mhhh

mhhhnodeposh

,,2,,1,,

,2,2,2,1,2,

,1,2,1,1,1,,,

',..,','

,',..,','

,',..,',''











 3-3 

 

The characteristic stresses along the weld toe line for each loading case are expressed as 

the following equations. 

 

 
 

,..,n,pos

mposhposhposhposh

mposhposhposhposh

21

',..,','min'

',..,','max'

,,2,,1,,b,,

,,2,,1,,u,,











 

3-4a 

3-4b 

3-4c 

 

In the case that only one node composes a target weld toe, such as PN-22, 'h,pos,u and 

'h,pos,b are the same value as 'h,pos,1. 

  Fig. 3-8f and g show the procedure to determine the loading cases causing the maxi-

mum and minimum hot-spot stresses, which are 'h,max and 'h,max, respectively. The 

actual vehicle load moves in both longitudinal and transverse directions and results in 

variation of the characteristic stresses ('h,pos,u and 'h,pos,b), as mentioned above. Hence, 

'h,max, 'h,min, and their ranges were determined by the following equations, after iterat-

ing the procedure to determine the characteristic stresses for all loading cases. 
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The load positions causing 'h,max and 'h,min are called POSmax and POSmin in this study. 

Loadings on POSmax and POSmin alternately can cause the largest hot-spot stress ranges 

('h) of hot spots and were considered as the critical loading condition in this study.  

On the other hand, hot-spot stress ranges can also be calculated for each node in the 

following equations. 
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The hot-spot stress range calculated by Equation 3-5c might have a larger value than 

the hot-spot stress ranges of each node in the weld toe lines (Equation 3-6c). However, 

it has not been clarified whether Equation 3-5c or Equation 3-6c is appropriate for fa-

tigue evaluation in the case that the hot-spot stress distribution along the weld toe lines 

changes as the loading positions move. Therefore, Equation 3-5c was applied as a safe 

evaluation in this study.  

  Fig. 3-8i shows the procedure to determine the weakest fatigue strength hot spots of 

the connections. The hot spots having the largest hot-spot stress ranges were assumed to 

be the location where a fatigue crack would initiate first in the connections, though the 

fatigue strengths or the fatigue lives of weld toes can be determined not only by the 

hot-spot stress range but also many other parameters, such as stress ratio, notch shape, 

and so on. In the case that two or more hot spots have almost the same hot-spot stress 

ranges, the one with the higher stress ratio than the other was selected. 

 

 

 

3.3. Critical loading conditions for three-dimensionally deformed con-

nections 

3.3.1. Hot-spot location moving 

Fig. 3-9 shows the hot-spot stress distributions along the weld toes that are the load 

cases causing the maximum and the minimum hot-spot stresses at the evaluated weld 

toes (load A and B in Fig. 3-9, respectively). Each of the weld toes in Fig. 3-9 has the 

largest hot-spot stress ranges of each of the models except for PS-32 and PN-31. 

Though PS-23 and PN-32 have the largest hot-spot stress ranges in the connections, 

they were weld toes at plate edges and composed of only one node. In the following 

description, “hot spot” means the node where the largest tension or compression 

hot-spot stresses were caused in each of the weld toes. 
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  The hot-spot locations along weld toes were moved as the loading position moved. 

The hot-spot locations were different from load A to load B in all of the weld toes ex-

cept for US-32 (Fig. 3-9b–f). The hot spots of US-32 were located at the bottom center 

of the box weld when both the maximum and the minimum hot-spot stresses, respec-

tively, were caused (Fig. 3-9a). However, the hot spots of US-32 also moved to the side 

of the box weld in the case of load C. The hot spots of VS-32, PS-32, and PN-31 were 

located at the corner of the box welds in both or either case of loads A and B (Fig. 3-9b, 

c, e). 

  Fig. 3-10 shows the ratio of hot-spot stress ranges of nodes ('h, node) to the hot-spot 

stress ranges of weld toes ('h). The ratio were calculated as Equation 3-6c with the 

evaluated points fixed to the side, the bottom and the corner of the welds, as shown in 

Fig. 3-10.  

The hot-spot stress ranges calculated under fixed evaluated points were smaller than 

those calculated by Equation 5 ('h) for all cases shown in Fig. 3-10, except for US-32. 

Therefore, the fatigue evaluation using hot-spot stresses with fixed evaluated points can 

overlook the maximum hot-spot stress ranges. 

The hot-spot stress ranges at the bottom of US-32 and VS-32 were 100% and 97% of 

'h, respectively (Fig. 3-10). In addition, out-of-plane bending stress components 

(0.8'
h,b

) accounted for 88% and 72% of the hot-spot stress ranges of US-32 and 

VS-32, respectively. Therefore, out-of-plane bending of the U-rib and the V-rib walls 

about the longitudinal axis (Fig. 2-2c) could be the dominant deformation.  

The hot-spot stress range at the side of PS-32 was 91% of 'h and the bending stress 

component accounted for 96% of the hot-spot stress range. Therefore, out-of-plane 

bending of the plate rib about the vertical axis was dominant in the weld toe. 

The hot-spot stress ranges at the side and the bottom of PN-31 were only 51% and 

70% of the hot-spot stress range, respectively. This result shows that the hot-spot loca-

tions were different from the corner to the bottom of the box weld toe when the 

maximum and the minimum hot-spot stresses were caused (Fig. 3-9e). 

 

3.3.2. Differences between conventional and proposed design procedures 

  Fig. 3-11 shows factored hot-spot stresses of connection US caused by both the con-

ventional and the proposed design procedures. Here, the conventional design procedure 

indicates loading on the evaluated ribs and assumes only flexural bending. The pro-

posed design procedure indicates loads moving in both longitudinal and transverse 

directions, and assumes the three-dimensional deformation of connections. 

  The factored hot-spot stress range caused by the proposed design procedure was ap-

proximately 6 times larger than that of the conventional design procedure. In addition, 

the hot spots, where the maximum factored hot-spot stresses in absolute values were 

caused, were different depending on the design procedure. Therefore, the conventional 

design procedure can overlook the acting stresses in structures under service. 

 

3.3.3. Loading position for maximum and minimum hot-spot stresses 

  Fig. 3-12 and Fig. 3-13 show the relations between load positions and hot-spot 

stresses (hereinafter referred to as influence surfaces) for weld toes in slit and non-slit 

connections, respectively. Influence surfaces have two horizontal axes indicating load 

positions and a vertical axis indicating one with larger absolute values of 'h,pos,u and 
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'h,pos,b caused by the corresponding load positions. Fig. 3-12 and Fig. 3-13 show the in-

fluence surfaces of hot spots at part 3 (the intersection between the left side of the center 

longitudinal ribs and the transverse ribs). The loading positions causing maximum and 

minimum hot-spot stresses, which are POSmax and POSmin, respectively, for each hot 

spot are also indicated in Fig. 3-12 and Fig. 3-13 as circle and cross marks. 

  POSmax and POSmin for hot spots in slit connections as well as connection UN were 

not on the center axes of the longitudinal or the transverse ribs; they were a distance 

away from the centers of the evaluated connections in both longitudinal and transverse 

directions. Furthermore, POSmax and POSmin were on different lanes (Fig. 3-12, Fig. 

3-13a, b). For example, POSmax and POSmin of connection US were located at x=-800 

mm of the lanes at y=-320 and +320 mm, respectively. The critical loading positions 

located on lanes distant from the center axes of the longitudinal ribs could be the results 

of distortion-induced stress at US-32 and UN-32', and stresses on PS-23', induced by 

shear deformation of the transverse-rib webs, as described in the following sections. 

  On the other hand, in the case of influence surfaces of VN-32' and PN-21', POSmin 

was located on the longitudinal ribs, whereas POSmax and POSmin were located on dif-

ferent lanes, as in US-32, UN-32', and PS-23'. 

  From the result of POSmax and POSmin located on different lanes, hot-spot stress 

ranges caused at the longitudinal-rib to transverse-rib connections in bridges under ser-

vice could not be simulated by fatigue tests with cyclic design loads on a fixed position 

or a fixed lane; these ranges correspond to the stress ranges caused by constant ampli-

tude and running wheel fatigue tests, respectively. For example, a constant amplitude 

fatigue test for US-32 with load range P on POSmax , can cause only 56% of the hot-spot 

stress range caused by the moving load with weight P according to the analysis results. 

  Locations of POSmax and POSmin were different depending on the longitudinal-rib 

shapes and whether slits existed. Therefore, critical loading conditions should be clari-

fied for each investigated connection. 

  Fig. 3-14 shows the relation between transverse distances from rib centers to load 

centers and the ratios of out-of-plane bending components when the maximum and the 

minimum hot-spot stresses were caused. The evaluated weld toes are longitudinal-rib 

side weld toes of welded joints at part 3 except for PS-33', which is the transverse-rib 

side weld toe of welded joints between the transverse rib and the deck plate. 

  The bending component ratios tended to be higher as the transverse distances from 

the rib centers to the load centers increased. As confirmed by Fig. 3-12, the load centers 

were transversely distant from the rib centers in the case of the slit connections. In addi-

tion, out-of-plane bending of the longitudinal ribs would be dominant for the maximum 

and the minimum hot-spot stresses of weld toes in the slit connections, as stated below 

(3.5.2). From the above results, POSmax and POSmin of weld toes in the slit connections 

were transversely distant from the longitudinal-rib center because out-of-plane bending 

caused by those eccentric loadings is dominant for hot-spot stresses of the slit connec-

tions. 

 
3.3.4. Inner diaphragm effects 

  The influence surfaces of hot spots in connection US and UN were affected by the 

existence of the inner diaphragms. Fig. 3-15a and b show the differences between the 

sides below and above the center transverse rib (diaphragm and non-diaphragm side) of 

the influence surface of US-32. The diaphragm side of the influence surface has POSmax 
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and POSmin of the whole influence surface on lanes at y=-320 and +320 mm, respec-

tively. On the other hand, the non-diaphragm side has POSmax and POSmin on lanes at 

y=+160 and -320 mm, respectively, which were transversely inverse to those of the di-

aphragm side. Fig. 3-15c and d show the differences between the influence surfaces of 

UN-32 and UN-32', which are weld toes at the diaphragm and non-diaphragm side of 

the center U-rib. The influence surfaces of UN-32 and UN-32' could be taken as influ-

ence surfaces relatively affected and un-affected by the inner diaphragm. The influence 

surface with the diaphragm effect has POSmin on the center axis of the U-rib, which is 

the lane at y=0 mm, compared to POSmin of the influence surface without the diaphragm 

effect, located on the lane at y=-160 mm. 

  However, influence surfaces of weld toes in connection VN were less or almost not 

affected by the existence of the inner diaphragm. Fig. 3-15e and f show the influence 

surfaces of VN-32 and VN-32', as in Fig. 3-15c and d. Both influence surfaces were al-

most flip vertical images of the other, and POSmax and POSmin were mirrored about the 

center transverse rib. 

  The results above indicate that hot-spot stresses of connections with the U-rib are af-

fected by the existence of the inner diaphragms, whereas the connections with the V-rib 

are less affected. Those differences result from the difference between the U-rib capable 

of distortion and the V-rib having a triangle cross section, which is stable and hardly 

distorted, as described in the following section. 

 

 

 

3.4. Stress occurrence mechanisms 
  Fig. 3-16 shows deformations of the deck panel models of connections US, UN, and 

-VN under loading located eccentric to the center axes of the longitudinal ribs to inves-

tigate the effect of rib types on distortion-induced stress on longitudinal-rib to 

transverse-rib connections. The loading position was POSmax for US-32 and its position 

was mirrored about the center transverse rib. The figure shows deformations of cross 

sections at the longitudinal-rib to transverse-rib connection (x=0 mm), loading positions 

(x=±800 mm), and at the middle of the loading positions (x=±400 mm). The figures for 

deformation of longitudinal-rib to transverse-rib connection cross sections also indicate 

hot-spot stresses caused by the eccentric position loading on the hot spots. 

  POSmax and POSmin of PS-23' could be transversely located on the lanes distant from 

the evaluated plate rib, since the loading on those positions causes shear forces in the 

transverse-rib web, and this results in deformation of the slits. It should be noted that 

POSmax and POSmin of PS-23' were distant from the transverse rib in the longitudinal di-

rection. 

 

3.4.1. Connection US 

  Significantly large hot-spot stress at US-32 could be caused mainly by bending of the 

U-rib walls when the eccentric position loading rotated the U-rib cross section with the 

inner diaphragm (Fig. 3-16c). The U-rib cross section at x=-400 mm, the inner dia-

phragm section, was rotated counterclockwise without any distortion by the loading at 

POSmax for US-32. The rotated cross section caused its lower flange to move to the pos-

itive direction about the y-axis, and the U-rib walls adjacent to the ends of the slit on the 

transverse-rib web were bent to the positive direction about the y-axis. Tension and 



3. Investigations of fatigue resistant structures for orthotropic steel decks 

52 

 

compression hot-spot stresses were on the U-rib wall side weld toes, corresponding to 

the bending directions of the U-rib walls. The bending component accounted for 82% of 

the hot-spot stress of US-32. From the deformation and the composition of the hot-spot 

stress, the rotation of the U-rib with the inner diaphragm and the restraint by the trans-

verse-rib web were considered to result in the significant large bending stress of US-32.  

  The relatively small hot-spot stress at US-32 could be caused mainly by bending of 

U-rib walls when the eccentric position loading distorted the U-rib cross section without 

the inner diaphragms (Fig. 3-16d). The U-rib cross section at x=+400 mm, without the 

diaphragm, was distorted by the eccentric loading located at the non-diaphragm side. 

The distortion caused its lower flange to move to the negative direction about the y-axis, 

and the U-rib walls adjacent to the ends of the slit on the transverse-rib web were bent 

to the negative direction about the y-axis. Compression and tension hot-spot stresses 

occurred on the U-rib wall side weld toes, corresponding to the bending directions of 

the U-rib walls. The bending component accounted for only 30% of the hot-spot stress 

of US-32. Here, the hot-spot stresses were smaller than one-fourth of those caused by 

loading on the diaphragm side. U-rib deformation and the restraint by the transverse-rib 

web resulted in the bending stress on the U-rib wall as with the inner diaphragm effect, 

but the bending direction was inversed due to the lower flange moving to the negative 

direction about the y-axis, compared to the positive direction in the case with the dia-

phragm. 

  The difference of the U-rib cross-section deformation resulting from the diaphragm 

effect resulted in the difference between the influence surfaces of the diaphragm side 

and the other side. As described in the previous section, the non-diaphragm side of the 

influence surface of US-32 had POSmax and POSmin on lanes at y=+160 and -320 mm, 

respectively, which were transversely inverse to those of the diaphragm side at y=-320 

and +320 mm (Fig. 3-15a, b). The difference of POSmax and POSmin could be the result 

from the bending direction of the U-rib walls, as shown in Fig. 3-16 due to the existence 

of the inner diaphragm. In addition, hot-spot stresses of US-32 were smaller in the case 

of the U-rib without the inner diaphragm than in the case of the U-rib with the dia-

phragm. 

 

3.4.2. Connections UN and VN 

  Almost no significant bending deformation was observed in connection UN com-

pared to the bent U-rib walls adjacent to the slit ends of connection US, but the 

diaphragm effects were still observed in connection UN, as in connection US. The U-rib 

cross section at x=-400 mm, the inner diaphragm section, was not deformed but fixed 

under the loading on the diaphragm side (Fig. 3-16c). On the other hand, the U-rib cross 

section at x=+400 mm was distorted to a diamond-like shape under loading on the 

non-diaphragm side. Furthermore, compared to the loading on the diaphragm side, the 

loading on the non-diaphragm side caused almost twice the hot-spot stress at UN-32, 

which is the U-rib corner additionally displaced in the vertical direction by the 

cross-section distortion. The difference of the cross-section deformation by the dia-

phragm effects resulted in the difference of the influence surface of UN-32 and UN-32' 

(Fig. 3-15c, d). In addition, the increased hot-spot stress by the additional vertical dis-

placement of the U-rib corner resulted in the UN-32' POSmin, which was located at the 

lane distant transversely from the U-rib center axis (Fig. 3-15d). 

  However, almost no significant bending deformation as well as diaphragm effects 
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were observed in connection VN. The V-rib cross sections at x=+400 and -400 mm were 

almost fixed and had nearly no deformations regardless of the diaphragm existence (Fig. 

3-16e, f). Furthermore, the hot-spot stress of VN-32 and VN-32' under loading on the 

diaphragm and the non-diaphragm side, respectively, were almost the same value, which 

was 60% smaller than the hot-spot stress of UN-32' shown in Fig. 3-16d. The V-ribs 

having the triangle cross section, which is stable and less distorted, resulted in influence 

surfaces similar to those of VN-32 and VN-32', and a smaller hot-spot stress than that of 

UN-32'. 

 

3.4.3. Connections PS and PN 

  Deformation of connection PS had differences in the levels between both ends of the 

slits, but differences were not observed in the continuous transverse-rib web of connec-

tion PN. Fig. 3-17a and b show the deformations of connections PS and PN under the 

loading at POSmax for PS-23'. The figures also show the hot-spot stress of hot spot 3 of 

connection PS and hot spot 2 of connection PN, all of which were hot spots of the 

transverse-rib side weld toes of welded joints. The hot-spot stress of PN-22 was 77% 

smaller than that of PS-23' in Fig. 3-15. Eliminating the slits in the continuous trans-

verse-rib web decreased the hot-spot stress of the connection by eliminating hot spot 3 

of connection PS, where significant high stresses were concentrated due to the shear 

deformations of the slits.  

 

 

 

3.5. Fatigue assessments of the connections 

3.5.1.  The weakest hot spot of each connection 

  The fatigue strength of the longitudinal-rib to transverse-rib connections were com-

pared with the fatigue strength of the hot spots considered to have the weakest fatigue 

strength of each connection. Fig. 3-18 and Fig. 3-19 show hot-spot stress ranges of the 

evaluated hot-spots in the deck panel models with closed and open ribs, respectively. 

The evaluated hot spots did not include the longitudinal ribs adjacent to the main girders 

of the deck panel models, which were significantly affected by the boundary conditions 

of the deck plates supported at the main girders, as mentioned above. The hot-spot stress 

ranges in the figure are the differences between 'h,max and 'h,min, and are caused by 

loadings alternately to POSmax and POSmin. Since connections US, UN, and VN behaved 

differently depending on whether the inner diaphragms were introduced, the hot-spot 

stress ranges of those connections are indicated for both cases with and without the di-

aphragm. The compositions of the hot-spot stresses, meaning tension-membrane and 

-bending, and compression-membrane and -bending, are also shown in Fig. 3-18 and 

Fig. 3-19. 

  The hot spots taken as the weakest of each connection were US-32, UN-32', VS-32, 

VN-32', PS-23', and PN-42. The weakest hot spots were longitudinal-rib side weld toes 

of welded joints between the longitudinal and transverse ribs, except for PS-23' at the 

upper end of the slit on the transverse-rib web. In the case without a diaphragm in the 

closed ribs, the weakest hot spots for connection US changed to US-31, whereas the 

weakest hot spots of the other connections did not change regardless of the diaphragm 

existence.  
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3.5.2. Fatigue strength improvement by applying the non-slit connections 

  Fig. 3-20 to Fig. 3-22 show the hot-spot stress ranges, the stress ratios, and the bend-

ing ratios of the weakest hot spots of the connections, respectively, where the stress 

ratios were calculated as 'h,min / 'h,max, and the bending ratios were calculated as 'h,b 

/ 'h. Table 3-2 also summarizes these values. 

  Applying the non-slit connections instead of the slit-connections decreased the 

hot-spot stress ranges for the U- and the V-ribs by 65% and 33%, respectively (Fig. 

3-20a, b). However, in the case of the non-diaphragm connection, the hot-spot stress 

range of the U-rib model was increased by 1% when the non-slit connection was ap-

plied, whereas the range of the V-rib model was decreased by 22% (Fig. 3-20a). These 

results mean that the non-slit connection can improve the fatigue strength of the con-

nections with the inner diaphragm adjacent to the connection, but has less effect on the 

fatigue strength improvement of the connections without the inner diaphragms in the 

case of the U-rib.  

  Fig. 3-21 shows the bending ratios of the weakest hot spots. Applying the non-slit 

connection decreased the bending ratios of the U- and the V-rib connections by 53% and 

49%, respectively (Fig. 3-21a). As assumed from the cross-section deformation (Fig. 

3-16), the improvement of applying the non-slit connection was the result of eliminating 

the slit where the U-rib walls bent and significant hot-spot stresses occurred. Since the 

significant U-rib wall bending occurred only in the case that the diaphragm constrained 

the U-rib cross-section deformation, the hot-spot stress ranges were not so changed 

from connection US to UN in the case of the non-diaphragm. On the other hand, the 

V-rib had resistance against cross-section deformation even without the diaphragm and 

behaved almost similarly regardless of the diaphragm existence, as mentioned in the 

above sections. Therefore, the hot-spot stress range of the V-rib model was decreased by 

applying the non-slit connection regardless of the diaphragm existence. 

  Applying the non-slit connection instead of the slit connection also decreased 

hot-spot stress ranges for the plate rib by 58%, whereas the hot-spot stress ranges of the 

cut-out connection (connection PC) were similar to that of the non-slit connection (Fig. 

3-20c). 

  Fig. 3-22 shows stress ratios of the weakest hot spots with the upside-down vertical 

axis. Applying the non-slit connection decreased stress ratios of all longitudinal-rib type 

connections. The stress ratios of the slit or the cut-out connections were ≧ -1.0, mean-

ing the tension stresses are larger than the compression stresses. On the other hand, the 

stress ratios of the non-slit connection were ≦-2.5, meaning the non-slit connection re-

strained the tension stress occurrence. This characteristic of the non-slit connection also 

contributed to enhancement of the fatigue lives. From the viewpoint of the stress ratio, 

the fatigue lives of connection PN were better than those of connection PC. 

   

3.5.3. Fatigue strength improvement by the V-rib 

  In Fig. 3-20 and Fig. 3-22, connection VN had the smallest hot-spot stress range as 

well as the lowest stress ratio of the five connections’ weakest hot spots. The range, 66 

N/mm
2
, was almost the fatigue limit of JSSC-E class. Furthermore, the hot-spot stress 

ranges of VN-32 and VN-32', which are the diaphragm and the non-diaphragm side 

weld toes, were almost same. Those results mean that connection VN had the highest 

fatigue strength of the seven connections in Fig. 3-20. The smaller hot-spot stress range 

and the lower stress ratio of VN-32' compared to those of UN-32' were achieved by the 
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triangle cross section of the V-rib, which was hardly distorted. 

  Fig. 3-23 shows the relations between rib stiffness and the hot-spot stress ranges at 

the weakest hot spots. The horizontal axes are Zc / Lc, where Zc is the cross section 

modulus and Lc is the span length of the longitudinal rib. The selection of the vertical 

axis was based on the simplified assumption that the stress of a point-loaded simple 

beam is in inverse proportion to Zc / Lc, even though plate theory should be strictly ap-

plied.  

  The hot-spot stress of connection VN was smaller than that of connection UN by 19%, 

even though the stiffness (Zc / Lc) of connection VN was smaller than that of connection 

UN. Based on the simplified assumption mentioned above, connections VN, VN1, and 

VN4 have efficient cross sections with small values of 
h
 × Z

c
 / L

l
 (Fig. 3-23a). 

These results would be due to the comparatively high resistance of those connections 

against cross-section distortion, since connections VN and VN1 have shallower rib walls 

and connection VN4 has a thicker plate. 
 

3.5.4. Fatigue strength improvement of the plate-rib connections 

  Fig. 3-23b shows relations between rib stiffness and the hot-spot stress ranges at the 

weakest hot spots of the plate-rib non-slit connections. The data shows hot-spot stress 

ranges at transverse-rib side weld toes of connections except for connection PN and 

-PN10, which have the weakest hot spots at the longitudinal-rib side welded toes. 

  The relations show an inverse proportion with slopes shallower than -1, even though 

almost all the data were from transverse-rib side weld toes. Hot-spot stress range varied 

among connections PN16, PN12, PN17 or PN26, PN22, PN27, which had the same longitu-

dinal ribs and transverse-rib webs heights of 400, 500, 600 mm, respectively.  

  Fig. 3-24 shows the relations between steel weights per unit area of deck surface and 

the hot-spot stress ranges of the weakest hot spots. Three types of arrows indicate in-

crease of plate-rib height, transverse-rib web height and transverse-rib flange width with 

other dimensions fixed. Increasing the transverse-rib web height decreased the hot-spot 

stress range more efficiently than increasing the longitudinal-rib height (where “effi-

ciently” means the ratio of the hot-spot stress range decrease to the steel weight 

increase). The transverse-rib flange width had almost no effect on the hot-spot stress 

range. 

  In the connections with a span length of 2250 mm, only connection PN25 and PN27 

had hot-spot stress ranges lower than the fatigue limit of JSSC-E class (Fig. 3-23b). 

Since connection PN25 has a comparatively heavy plate rib with 19-mm thickness, con-

nection PN27, with 16-mm thickness was selected as a suitable structure in the case that 

a longitudinal-rib span length up to 2250 mm is applied. 

   

3.5.5. Suitable structure for longitudinal-rib to transverse-rib connections 

  In Fig. 3-24, the V-rib non-slit connections were the most “efficient” structure. How-

ever, the fatigue strength of the joints between the closed longitudinal ribs and deck 

plates were low and fatigue cracks were not yet eliminated. Therefore, this study pro-

poses connection PN as the high fatigue strength connection. 
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3.6. Summary 

This chapter investigated critical loading positions for longitudinal-rib to trans-

verse-rib connections and their fatigue strengths under the critical loading conditions by 

using the hot-spot stresses computed by finite element analyses. The thickness and the 

bending effects were taken into account for hot-spot stress modification. Based on the 

results, the following conclusions were obtained. 

 

1) Critical loading positions causing maximum and minimum hot-spot stresses on lon-

gitudinal-rib to transverse-rib connections are located at a distance away from the 

evaluated connections. Furthermore, those positions are different depending on the 

longitudinal-rib type and the slit existence on the transverse-rib webs. 

2) Eliminating the slit on the transverse-rib webs can improve the fatigue strength of 

the longitudinal-rib to transverse-rib connections. The hot-spot stress ranges of con-

nection UN and PN were smaller than those of US and PS by 65% and 58%, 

respectively, where the inner diaphragms were attached in the U-ribs at 400 mm 

from the transverse-rib. 

3) Using V-ribs would further enhance the fatigue strength of non-slit connections. The 

hot-spot stress range of connection VN was 39% smaller than that of connection 

UN. 

4) Hot-spot stresses of the connections between U-ribs and transverse-rib webs are 

significantly affected by the existence of inner diaphragms adjacent to the connec-

tions. The hot-spot stresses ranges of connection US and UN were increased and 

decreased by the inner diaphragms. 
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Table 3-1 Analysis models for fatigue assessments of longitudinal-rib to transverse-rib 

connections 

Model / Connection 
Longitudinal-rib 

Slit td Parameter 
Type Span [mm] 

US U 2500 Slit 16 

Longitudinal-rib  

type (closed) and  

slit shapes 

UN U 2500 Non-slit 16 

VS V 2500 Slit 16 

VN V 2500 Non-slit 16 

VN1–VN5 V
a
 2500 Non-slit 16 

PS Plate 1667 Slit
b
 12 

Slit shapes PC Plate 1667 Slit
c
 12 

PN Plate 1667 Non-slit 12 

PN10–PN19 Plate 1500 Non-slit 16 Dimensions of plate  

and transverse ribs PN20–PN29 Plate 2250 Non-slit 16 
a
 Five types of V-sections, 

b
 Large slit, 

c
 small cut-out 
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Table 3-2 Characteristic stress ranges and stress ratios of longitudinal-rib to trans-

verse-rib connections, computed by finite element analyses 

 With diaphragm  Without diaphragm 

Connection Hot spot 
'h  

[N/mm
2
] 

R 


Hot spot 
'h  

[N/mm
2
] 

R 

US 32 228 -0.78 0.88  31' 79 -2.96 0.20 

UN 32' 56 -8.79 0.39  32' 80 -4.39 0.41 

VS 32 99 -0.71 0.72  32' 85 -0.72 0.57 

VN 32' 66 -7.92 0.36  32' 67 -7.92 0.36 

VN1 32' 78 -6.17 0.44  32 73 -9.11 0.41 

VN2 32' 64 -3.58 0.46  32 59 -5.64 0.43 

VN3 32' 49 -4.28 0.44  32 47 -5.77 0.41 

VN4 32' 39 -5.33 0.43  32 38 -6.19 0.39 

VN5 32' 60 -2.52 0.54  32 50 -3.57 0.45 

PS N/A N/A N/A N/A  23' 184 -0.93 0.15 

PC N/A N/A N/A N/A  31 73 -0.18 0.46 

PN N/A N/A N/A N/A  42 76 -2.47 0.31 

PN10 N/A N/A N/A N/A  42* 69 -1.74 0.27 

PN11 N/A N/A N/A N/A  21* 55 -1.90 0.31 

PN12 N/A N/A N/A N/A  21* 51 -1.78 0.30 

PN13 N/A N/A N/A N/A  21* 69 -2.12 0.35 

PN14 N/A N/A N/A N/A  21* 55 -1.80 0.29 

PN15 N/A N/A N/A N/A  41* 44 -1.28 0.38 

PN16 N/A N/A N/A N/A  31* 59 -1.42 0.42 

PN17 N/A N/A N/A N/A  31 52 -2.98 0.46 

PN18 N/A N/A N/A N/A  31* 51 -1.35 0.35 

PN19 N/A N/A N/A N/A  21* 51 -1.92 0.30 

PN20 N/A N/A N/A N/A  21* 80 -4.89 0.09 

PN21 N/A N/A N/A N/A  21* 69 -2.07 0.43 

PN22 N/A N/A N/A N/A  21* 65 -1.96 0.42 

PN23 N/A N/A N/A N/A  21* 84 -2.26 0.44 

PN24 N/A N/A N/A N/A  21* 68 -1.93 0.41 

PN25 N/A N/A N/A N/A  21* 54 -1.64 0.39 

PN26 N/A N/A N/A N/A  21* 79 -1.90 0.51 

PN27 N/A N/A N/A N/A  21* 59 -2.10 0.37 

PN28 N/A N/A N/A N/A  21* 65 -1.57 0.39 

PN29 N/A N/A N/A N/A  21* 65 -2.19 0.42 
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Fig. 3-1 Analysis models with closed-section longitudinal-ribs (models US, UN, VN, 

VN1–VN5) 
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Fig. 3-2 Analysis models with open-section longitudinal-ribs (model PS, PC) 

 

 
 

 

Fig. 3-3 Analysis models with open-section longitudinal-ribs (model PN) 
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Connection 
Longitudinal-rib  Transverse-rib 

LL [mm] hL [mm] tL [mm]  hT [mm] bT [mm] 

PN10 1500 183 16  500 200 

PN11 1500 235 16  500 200 

PN12 1500 256 16  500 200 

PN13 1500 162 19  500 200 

PN14 1500 217 19  500 200 

PN15 1500 304 19  500 200 

PN16 1500 256 16  400 200 

PN17 1500 256 16  600 200 

PN18 1500 256 16  500 100 

PN19 1500 256 16  500 300 

PN20 2250 183 16  500 200 

PN21 2250 235 16  500 200 

PN22 2250 256 16  500 200 

PN23 2250 162 19  500 200 

PN24 2250 217 19  500 200 

PN25 2250 304 19  500 200 

PN26 2250 256 16  400 200 

PN27 2250 256 16  600 200 

PN28 2250 256 16  500 100 

PN29 2250 256 16  500 300 

 

Fig. 3-4 Analysis models with plate ribs and non-slit transverse-rib webs 

  (models PN10–PN29) 

 
 

 

  

1
0

0
0

1
6

1
6

LL 150150

100

h
T

100 5×320=800

a) Side view of deck panel models of connections PN10–PN29

b) Front view (A-A)

160160

1
6

h
L

tL

c) Connections PN10–PN29

LL

bT

12 9

A

A



3. Investigations of fatigue resistant structures for orthotropic steel decks 

62 

 

 
 

Fig. 3-5 Evaluated weld toes of longitudinal-rib to transverse-rib connections 
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Fig. 3-6 Load model and load positions 
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Fig. 3-7 Finite element model 
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Fig. 3-8 Hot spot stress computation procedure 
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Fig. 3-9 Hot-spot locations caused by characteristic load cases  

(The loading positions are those maximizing and minimizing hot-spot stresses, as a rule) 
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weld toes ('h) 

 
Fig. 3-11 Factored hot-spot stresses of connection US, caused by conventional and pro-

posed design procedures 

Open:1(1')

Solid:2

0

y
x

0

0

y
x

0

Loading position 

Loading position 

y=0

y= -800
y= -640
y= -480
y= -320
y= -160
y=0
y=+160
y=+320
y=+480
y=+640
y=+800

Minimum (maximum 

of absolute values)

-1000 0 1000

-100

0

100

Loading position [mm]

F
ac

to
re

d
 h

o
t-

sp
o

t 
st

re
ss

 [
N

/m
m

2
]

-1000 0 1000

-100

0

100

Loading position [mm]

F
ac

to
re

d
 h

o
t-

sp
o

t 
st

re
ss

 [
N

/m
m

2
]

Maximum (maximum of absolute values)

a) Factored hot-spot stresses caused by loads on evaluated U-rib

b) Factored hot-spot stresses caused by all investigated load cases

Weld toe US-31

Weld toe US-32

y=0

y= -800
y= -640
y= -480
y= -320
y= -160
y=0
y=+160
y=+320
y=+480
y=+640
y=+800

Weld toe US-31

Weld toe US-32



3. Investigations of fatigue resistant structures for orthotropic steel decks 

68 

 

 
Fig. 3-12 Influence surfaces of slit connection 

 

0 800-800

-1200

1200

0

y [mm]

x 
[m

m
]

0 800-800

-1200

1200

0

y [mm]

x 
[m

m
]

0 800-800

-1200

1200

0

y [mm]

x 
[m

m
]

0 800-800

-1200

1200

0

y [mm]

x 
[m

m
]

0 800-800

-800

800

0

y [mm]

x 
[m

m
]

0 800-800

-800

800

0

y [mm]

x 
[m

m
]

0 800-800

-800

800

0

y [mm]

x 
[m

m
]

a) Influence surface of weld toe US-31 c) Influence surface of weld toe VS-31

e) Influence surface of weld toe PS-31'

b) Influence surface of weld toe US-32 d) Influence surface of weld toe VS-32

f) Influence surface of weld toe PS-32

g) Influence surface of weld toe PS-33'
100

-100

0

'h
[N/mm2]

POSmax

Load center 

for 'h, max

POSmin

Load center 

for 'h, min

Hot spot

Center axis of evaluated rib



3. Investigations of fatigue resistant structures for orthotropic steel decks 

69 

 

 
Fig. 3-13 Influence surfaces of non-slit connections 
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Fig. 3-14 Relations between transverse distances from rib-centers to load centers and ra-

tios of out-of-plane bending components when the maximum and the 

minimum hot-spot stresses were caused 
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Fig. 3-15 Diaphragm effects on the influence surfaces 
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Fig. 3-16 Deformation of closed longitudinal-ribs, deformation × 200 
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Fig. 3-16 Deformation of closed longitudinal-ribs (continue), deformation × 200 

-2
6

-2
9

-5
7

8

[N
/m

m
2
]

[N
/m

m
2
]

-2
3

-2
3

[N
/m

m
2
]

[N
/m

m
2
]S

ec
ti

o
n
 x

=
-4

0
0

m
m

S
ec

ti
o

n
 x

=
0

m
m

S
ec

ti
o

n
 x

=
-8

0
0

m
m

S
ec

ti
o

n
 x

=
-4

0
0

m
m

S
ec

ti
o

n
 x

=
0

m
m

S
ec

ti
o

n
 x

=
-8

0
0

m
m

S
ec

ti
o

n
 x

=
-4

0
0

m
m

S
ec

ti
o

n
 x

=
0

m
m

S
ec

ti
o

n
 x

=
-8

0
0

m
m

S
ec

ti
o

n
 x

=
-4

0
0

m
m

S
ec

ti
o

n
 x

=
0

m
m

S
ec

ti
o

n
 x

=
-8

0
0

m
m

e)
D

ef
o

rm
at

io
n
s 

o
f 

co
n
n
ec

ti
o

n
 U

N
 b

y
 t

h
e 

lo
ad

 o
n
 d

ia
p

h
ra

g
m

 s
id

e
f)

D
ef

o
rm

at
io

n
s 

o
f 

co
n
n
ec

ti
o

n
 U

N
 b

y
 t

h
e 

lo
ad

 o
n
 n

o
n

-d
ia

p
h
ra

g
m

 s
id

e

g
)

D
ef

o
rm

at
io

n
s 

o
f 

co
n
n
ec

ti
o

n
 V

N
 b

y
 t

h
e 

lo
ad

 o
n
 d

ia
p

h
ra

g
m

 s
id

e
h
)

D
ef

o
rm

at
io

n
s 

o
f 

co
n
n
ec

ti
o

n
 V

N
 b

y
 t

h
e 

lo
ad

 o
n
 n

o
n

-d
ia

p
h
ra

g
m

 s
id

e



3. Investigations of fatigue resistant structures for orthotropic steel decks 

74 

 

 

 
 

Fig. 3-17 Diaphragm effects on the influence surfaces, deformation × 300 
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Fig. 3-18 The weakest hot-spots of the closed-rib models 
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Fig. 3-19 The weakest hot-spots of the open-rib models 
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Fig. 3-20 Reduction of hot-spot stress rages by applying non-slit connections 
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Fig. 3-21 Reduction of out-of-plane bending stress by applying non-slit connections 

 

 

 

 
 

Fig. 3-22 Reduction of tension stress occurrence by applying non-slit connections 
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Fig. 3-23 Relationships between rib stiffness and the hot-spot stress ranges 
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Fig. 3-24 Relations between hot-spot stress ranges and steel weights of the connections 
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4. Fatigue strength verification 

4.1. Introduction 

  Fatigue improvement for longitudinal-rib to transverse-rib connections is important 

for developing orthotropic steel decks with high fatigue strength. Orthotropic steel 

decks suffer serious fatigue problems, especially fatigue cracks initiated from the longi-

tudinal-rib to transverse-rib connections; this cracks account for approximately 40% of 

all fatigue cracks in orthotropic steel decks (Mori ed. 2010). However, previous studies 

of longitudinal-rib to transverse-rib connections have not sufficiently considered mov-

ing of the loading position (Katsumata et al. 2000; Ohashi et al. 2000; Kolstein 2001; 

Taskopoulos et al. 2003, Conner and Fisher 2006, Miki and Suganuma 2014; Hanji et al. 

2013). The positions of vehicles move in the longitudinal direction and are transversely 

distributed (Leonard 1969; Takada 2009a). Furthermore, critical loading positions, 

causing maximum and minimum stresses on longitudinal-rib to transverse-rib connec-

tions are a distance away from the evaluated connections (Miki et al. 1995). 

From the background above, the fatigue evaluation method was proposed to take 

moving of load positions into account (Chapter 3). The method used the hot-spot stress 

approach with factors, 0.8 and (thickness/25)
0.25

, for the bending and the thickness ef-

fects on fatigue, respectively, since the longitudinal-rib to transverse-rib connections 

have comparatively thin steel plates down to 6 mm and both membrane and bending 

stresses. As the results of the evaluation, critical loading positions were found to be a 

distance away from the evaluated longitudinal-rib to transverse-rib connections in all 

cases of the six types of connections. The critical loading positions were those causing 

the maximum and the minimum factored hot-spot stresses on the connections, and they 

were considered to be dominant for fatigue damage. Hence, the fatigue strength of the 

connections must be evaluated under those loading conditions.  

The applicability of the factored hot-spot stress approach has not been investigated 

for longitudinal-rib to transverse-rib connections. Based on the re-analyzing of literature 

data (Chapter 2), the approach was found to provide safe fatigue evaluations against 

JSSC-E class (Japanese Society of Steel Construction 2012). However, the literature 

data did not include models of orthotropic steel decks. In addition, the re-analyzing used 

basic fatigue test results of component models to determine the thickness and bending 

effects, though it was reported that the fatigue strength of the component models and 

structural models could be different (Anami 2000). The hot-spot stress of the longitudi-

nal-rib to transverse-rib connections were computed by shell element models of finite 

element analyses, because it can decrease computation costs dramatically compared to 

the costs of solid element models. However, finite element models, especially shell el-

ement models, cannot simulate shapes and stiffness of welded parts. Therefore, the 

applicability of the factored hot-spot approach needed to be investigated for stress anal-

yses by shell element models. 

  From the background above, the following objectives of this chapter were estab-

lished. 
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1) Clarify the fatigue strength of longitudinal-rib to transverse-rib connections by fa-

tigue tests simulating critical loading conditions. 

2) Investigate the applicability of the factored hot-spot stress approach to longitudi-

nal-rib to transverse-rib connections. 

3) Validate shell element FEA applicability to confirm the validity of critical loading 

conditions determined by FEA and applied to fatigue test conditions. 

 

 

 

4.2. Fatigue tests under critical loading conditions 

4.2.1. Panel specimens for three-dimensionally deformed connections 

  Four deck panel models were fabricated for fatigue tests, as shown in Table 4-1 and 

Fig. 4-1. Models U and P included the slit and the non-slit connections to investigate the 

applicability of the hot-spot stress approaches to both types of connections, since U-rib 

and plate-rib slit connections (connections US and PS), are a common detail applied to 

Japanese bridges, and U-rib and plate-rib non-slit connections (connections UN and PN), 

are expected to have high fatigue strength. Models V and PL included only the non-slit 

connections with V-rib and Plate-rib (connections VN and PN27). Model PL was pre-

pared to investigate the fatigue behavior of plate-rib non-slit connections under running 

as well as constant position tandem axis loadings, which are closer to actual vehicle 

loading compared to constant position double tire loadings of the other models. Con-

nection names in this chapter are same as previous chapter. 

The models made of JIS SM400A steels were fabricated by a common assembling 

procedure that checks for weld root gaps and weld leg length. As written in the recom-

mendations (Federal Highway Administration 2012), transverse-ribs were fitted-up to 

longitudinal ribs previously welded to deck plates, and welded to longitudinal ribs and 

deck plates. The main girders of the models were also welded to deck plates before as-

sembling the transverse ribs. Weld root gaps between longitudinal and transverse ribs 

were designed as 2 mm only for plate-rib non-slit connections to enable the fit-up of the 

transverse ribs (Fig. 4-2), compared to 1 mm for the other connections. Therefore, the 

weld root gaps of the plate-rib non-slit connections were 4 mm maximum with 0 mm 

gaps at the other side surface of the plate ribs. The weld leg lengths of fillet welds of 

non-slit connections were controlled to be larger than 6 mm plus weld root gaps, 

whereas those of the other joints were larger than 6 mm, as shown in Table 4-1 Deck 

panel models for fatigue tests. Welds of rib-to-deck joints of the closed rib models were 

designed as 75% partial penetrations. 

As mentioned in the previous chapter, common designs in Japan were applied to 

cross sections of longitudinal ribs, slit shapes, and span lengths of longitudinal ribs ex-

cept for the design of Model PL (Japan Road Association 2014). The V-rib cross section 

was decided to have the same radius as the cross section used in the bending plate pro-

cess and approximately the same cross section area as those of the commonly used 

U-rib. The plate-rib cross section was decided to have approximately the same cross 

section modulus with a commonly used bulb rib with 230-mm height and 11-mm thick-

ness, where the effective width of the deck plates was taken into account for the sections. 

The slit detail of connection PS was based on the recommended standard with its radius 

enlarged to 45 mm, which could improve fatigue strength according to investigations of 
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the Metropolitan Expressway in Japan (Mori ed. 2010). Model PL was designed to have 

lower hot-spot stress ranges than the constant amplitude fatigue limit of JSSC-E class, 

after the thickness and the bending effect were taken into account. 

  The inner diaphragms were welded in U- and V-ribs by 4-mm fillet welds to simulate 

actual structural conditions. The diaphragms are installed at the longitudinal connec-

tions of actual structures for protection against corrosion. In this study, the effect of the 

inner diaphragms on fatigue strength was also investigated, since they can increase 

stresses on longitudinal-rib to transverse-rib connections (Katsumata et al. 2000). 

 

4.2.2. Evaluated weld toes 

  Fig. 4-3 shows evaluated weld toes in the models. Numerous arrows along weld toe 

lines mean a hot spot will be somewhere on the toe line. Weld toes 1 and 2 were given 

to transverse- and longitudinal-rib side weld toes of the welded joints between the lon-

gitudinal and transverse ribs (Fig. 4-3b, c, e, g, i). In the case of connection PS, weld 

toes 3 and 4 were given to the transverse-rib and deck-plate side weld toes of welded 

joints between the transverse rib and the deck plate (Fig. 4-3g). It should be noted that 

weld toe 4 has almost no fatigue problem according to the investigations of Japanese 

expressways. In the following descriptions, weld toes of each type of connection are 

named as the connection name combined with two numbers indicating the evaluated 

part number and the weld toe number, such as US-31 indicating weld toe 1 in part 3 of 

connection US. 

 

4.2.3. Static loading tests: validation of FEA applicability 

Static loading tests were conducted before each fatigue test to investigate the stress 

behavior at surfaces near evaluated weld toes and to check the differences between the 

measured stress and the FEA results for validation of the FEA from the previous chapter. 

Static loading tests in the running wheel tests investigated the stress behavior around 

evaluated weld toes. The static loading tests included the principal stress directions, 

since the directions were assumed to be rotated, according to FEA results. 

Fig. 4-1 shows the load cases. Loads were transferred from a 500 kN hydraulic jack 

to the models via rubber plates to simulate tire load conditions, as shown in Fig. 4-4b, or 

a running wheel machine was located on the models, as shown in Fig. 4-4c. The static 

loadings by the running wheel were conducted while moving the wheel position in 

200-mm intervals. 

The maximum loads of the static loading tests were the same as those for the fatigue 

tests when both static loading and fatigue test were conducted with those loading posi-

tion. The maximum loads were 100 kN when only static loading tests were conducted 

with those loading positions. Static loadings were conducted not only with the load cas-

es shown in Fig. 4-1, but also other load cases. Details of the other load cases are 

described in Appendix-B. 

  Strains and strain concentrations were measured at surfaces near the evaluated weld 

toes to investigate the stress behavior and to check differences between the measured 

stress and the FEA results. For all evaluated weld toes, uni-axial or tri-axial strain 

gauges with 1-mm gauge length were attached at points distant from the surface inter-

sections of the two plates by 20 mm or from plate edges by 10 mm, as shown in Fig. 4-5. 

The strain gauge locations were determined to measure stresses without the effects of 

the weld toe shapes. Furthermore, stress concentrations were measured at weld toes 
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PL-21 and 22 by five strain gauges arranged in a row at 2-mm intervals. The first strain 

gauges were attached on points as near to the weld toes as possible. 

 

4.2.4. Constant amplitude fatigue tests: validation of fatigue strength  

  Table 4-3 shows sequences, load ranges, and frequencies of fatigue tests with the load 

cases shown in Fig. 4-1. Additional fatigue tests for rib-to-deck joints were conducted 

by single tire loads located at the centers of models U and V. 

Constant amplitude fatigue tests were conducted for all four models with loading po-

sitions expected to cause maximum and/or minimum hot-spot stresses on the 

longitudinal-rib to transverse-rib connections. Loading cases were named with upper-

case letters for the target connections followed by lowercase letters ‘a’ and ‘b’, such as 

USa. The loads simulated a double tire for models U, V, and P, and double tires of tan-

dem axes for model PL. The loads for models U, V, and P were applied to simulate the 

critical loading conditions clarified by the hot-spot stress computations in the previous 

chapter, and the loads for model PL simulated the situation closer to actual vehicle 

loading.  

  The load ranges of constant amplitude fatigue tests were basically determined to sim-

ulate the hot-spot stress ranges caused in actual bridges based on the FEA results. In 

actual bridges, stresses on the weld toes change from tensile to compressive depending 

on the load positions. However, the stresses at the weld toes were fixed to tensile or 

compressive cyclic stresses in the fatigue tests. To simulate the hot-spot stress ranges by 

the stress reversal under constant amplitude cyclic loading, the load ranges for fatigue 

tests were increased as follows. 

 

design

testh

h PP
,'

'




  

4-1 

 

where P, Pdesign represent the increased load range and the design load (= 100 kN), re-

spectively, and 'h, and 'h,test represent the hot-spot stress ranges caused by the 

moving positions of loads and fatigue tests based on the FEA results, respectively. The 

design load was determined from the Japan Road Association (2014). It should be noted 

that P varies for each weld toe because 'h, and 'h,t of each weld toe are different. 

The load ranges of the fatigue tests were increased when no fatigue cracks were ex-

pected, based on the computed hot-spot stress, or no cracks were detected after 5.0 

million cycles of fatigue tests. The stress ratios were set to approximately zero. 

Fatigue failure events were defined as the surface crack propagation from the weld 

toe to the base material in this study. Fatigue crack initiations and propagations were 

monitored by strain gauges (Fig. 4-5), and magnetic particle examinations. 

Unexpected fatigue cracks at rib-to-deck joints were detected underneath the load po-

sitions during the fatigue tests for models P and V, and the unexpected cracks of model 

P were repaired. The fatigue cracks of model P were initiated from the deck-plate side 

weld toes of the rib-to-deck fillet welded joints. Because these cracks were not reported 

in the investigations of actual bridges, the fatigue tests were continued after removing 

the cracks by grinding, re-welding the ground part and reinforcing new weld toes by ul-

trasonic impact treatments. The main reason for the unexpected cracks was the increase 

of the load range by Equation 4-1 to simulate the hot-spot stress ranges of the longitu-

dinal-rib to transverse-rib connection by moving the load position. The hot-spot stresses 
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at the weld toe of un-expected cracks were greater than 200 N/mm
2
.  

The un-expected fatigue cracks of model V were detected on the weld bead surface of 

the rib-to-deck 75%-penetration welded joint after finishing the constant amplitude fa-

tigue tests. The running wheel fatigue tests were continued without repairing the 

rib-to-deck joint crack, which might have been initiated from the weld root after the 

constant amplitude fatigue tests. The rib-to-deck joint cracks were considered to not af-

fect the fatigue tests for the longitudinal-rib to transverse-rib connections. 

 

4.2.5. Running wheel fatigue tests: validation of fatigue lives 

Running wheel fatigue tests were conducted for models V and PL to investigate fa-

tigue behaviors of the non-slit connections under situations closer to actual vehicle 

loadings, as shown in Fig. 4-4c. The running wheel machine had two sets of double tires 

arranged as tandem axes with 1400-mm distance, and the machine was moved back and 

forth by a chain. 

Load ranges, or the weight of the running wheel machine, were set to 198 kN. Even 

though it would be heavier than the design fatigue loads, the load could not cause 

enough hot-spot stress ranges to initiate fatigue cracks according to the FEA results. 

Heavier load ranges would increase stress ranges and fatigue damage possibilities, but 

tire collapse would be a danger in actual wheel tires. 

Fatigue crack initiations and propagations were monitored by strain gauges (Fig. 4-5), 

and magnetic particle examinations were conducted at intervals of approximately 0.5–

0.7 × 10
5
 cycles. 

 

 

 

4.3. Static loading test results 

4.3.1. Validation of FEA results used for fatigue test condition  

  Fig. 4-6 shows comparisons between the measured and the computed stress on sur-

faces near the evaluated weld toes. The lengths and directions of arrows indicate the 

magnitudes and directions of principal stresses. The measured stresses were calculated 

from measured strain by an elastic modulus of 205 kN/mm
2
. The computed stresses 

were the results of the FEA from the previous chapter.  

For all evaluated toes, the directions of the measured principal stress were similar to 

those of the computed stresses. In the case of strains measured in connection PS, as 

shown in Fig. 4-6a, the measured directions differed from the computed directions by -9 

to +9 degrees. The differences were -5 to +7 degrees in the case of connection VN 

shown in Fig. 4-6b. The comparison was conducted for a measured point having a stress 

magnitude larger than 10 N/mm
2
. From the comparison above, the stress distributions 

were confirmed to be simulated well in FEA.  

However, the magnitudes of the measured stresses tended to be larger than those of 

the computed stresses especially at weld toes on plate edges. The magnitudes of the 

measured strain at weld toes on plate edges were higher than those of the computed 

strain by an average of 19% and a maximum of 36% in the case of Fig. 4-6a. The 

hot-spot stresses calculated from measured strains were also higher than those from the 

FEA results. Magnitudes of the measured strain at weld toes on plate surfaces were 

higher than those of the computed strains by 1.5% on average and 17% maximum.  
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4.3.2. Inelastic strain behaviors at weld toes 

  Fig. 4-7 shows inelastic strain behaviors observed at plate surfaces and plate edges 

near the evaluated weld toes on plate edges when compression stress acted on the strain 

gauges. Fig. 4-7b–d show strains measured at plate surfaces near PS-23 (PS-23'), PS-43 

(PS-43'), and PS-53 (PS-53'). Fig. 4-7a show the locations of the strain gauges. The 

strains at PS-43 and PS-53 behaved like compression yielding when 100 kN of load PSa 

acted, compared to the linear relation between tensile strain at PS-23 and the load. Fig. 

4-7f and g show strains measured at plate surfaces and edges near PN-42 and PN-42', 

respectively. Fig. 4-7e shows the locations of those strain gauges. The strains at PN-42 

and PN-42' also behaved like compression yielding under 210 kN of load PNa. In addi-

tion, similar inelastic strain behaviors were observed at PS-33 and PS-33' under 100 kN 

of load PSc, PL-22 and PL-22' under 198 kN of load PLr, PL-32 and PL-32' under 856 

kN of load PLa, and PL-42 and PL-42' under 633 kN of load PLb. All of these inelastic 

strains were observed at weld toes on plate edges in connection PS and PN, where the 

compression stress acted. 

  The inelastic strains might arise from the compression residual stress introduced dur-

ing fabrication procedures. The strain levels at the gauges immediately before inelastic 

strain behavior started were smaller than the material yielding strains, which were more 

than 1500  according to mill sheets. These strains could mean that additional residual 

stresses existed at the weld toes on plate edges. Though welding procedures are known 

to cause tensile residual stresses near to the yielding of base materials, it has also been 

reported that residual stress levels could change depending on the welding procedures. 

In previous study, compression residual stresses were also observed at weld toes on 

plate edges, whereas the specimens were different from the longitudinal-rib to trans-

verse-rib connection (Fricke and Doerk 2004). Furthermore, the base materials can have 

residual stress distributions along the thicknesses as a result of the steel plate rolling. 

However, it should be noted that controlling residual stresses at the weld toes would be 

difficult due to complex fabrication procedures of longitudinal-rib to transverse-rib 

connections and the compression residual stress could not be expected. 

 

 

 

4.4. Fatigue test results 

4.4.1. Constant amplitude fatigue test results 

  Table 4-4 summarizes the fatigue test results. The table shows load cycles as the cy-

cles for fatigue failure (Nf) or cycles of the end of the fatigue test in cases that no cracks 

were detected. Surface fatigue cracks were detected at slit connections of models U and 

P, and non-slit connections of models V and PL, as shown in Fig. 4-8 and Fig. 4-9. No 

cracks were detected in non-slit connections of models U and P by both visual inspec-

tions and strain monitoring. Though fatigue cracks at weld toes VN-32 and VN-32' were 

detected after 0.05 million cycles of the running wheel loading of load VNra, those 

cracks were considered to be caused by the constant amplitude fatigue test of load VNa; 

this test was conducted right before running wheel loading, because those cracks were 

not propagated after 0.50 million cycles of running wheel loading. The constant ampli-

tude loading of load VNa gave a 1.2 times larger load range than that of the running 

wheel loading, and might have caused fatigue cracks at weld toes VN-32 and VN-32', 
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but those cracks were overlooked. In addition, the running wheel loading of load VNrb, 

which was run on the next V-rib, did not cause any damage after 0.17 million cycles. 

  Fatigue failures were determined from the lengths of the surface fatigue cracks. Fig. 

4-10 shows the relations of fatigue crack lengths to load cycles. Fig. 4-10a shows the 

crack lengths in the base materials; these lengths could be zero in the cases that fatigue 

cracks were detected on weld toes but not yet propagated into the base materials. Fig. 

4-10b shows fatigue crack lengths including cracks along the weld toes. The cracks ini-

tiated at the box weld toes on plate surfaces (US-22, US-32, PS-14, PS-24, PL-31, and 

PL-41) were propagated into the base materials. Fatigue failures for those cracks were 

defined as crack propagations from the weld toes into the base materials in this study. 

However, the crack initiated at the weld toes on plate edges, which was PS-23, was ini-

tiated at the plate edge and not propagated into the base material during fatigue tests. 

The fatigue failure for that crack was defined as crack propagation into the plate surface, 

i.e., a through-thickness crack in this study. In addition, the cracks at the weld toes per-

pendicular to transverse weld, which were VN-32 and VN-32', were also not propagated 

into the base material. The fatigue failures for those cracks were defined as the surface 

crack lengths of three times the plate thickness under the assumption that crack aspect 

ratios were one-third in this study. The surface crack lengths were 22-40 mm at the fa-

tigue failures.  

The lengths of the cracks at weld toes US-22 and US-32 propagated at accelerated 

speed, whereas propagation of the crack at weld toe PS-14 was decelerated. Crack 

propagation rates are known to increase as the crack length increases in simple compo-

nent joints under membrane stress. The reason for the crack deceleration could be the 

decrease of effective stress ranges at crack tips by complex stress conditions including 

the bending stress component at longitudinal-rib to transverse-rib connections. 

Fig. 4-11 shows strains measured at surfaces near the cracked weld toes. The strain 

history indicates that cracks initiated before they were detected visually and tensile re-

sidual stresses existed at some weld toes. The measured strain ranges dropped at weld 

toes US-22, US-23, PL-31, and PL-41, or increased at weld toe PS-24, before cracks 

were detected. This result means cracks initiated before visual detections. Furthermore, 

the strains measured under almost no external forces dropped at weld toes PS-24, PL-31, 

and PL-41. This result indicates tensile residual stresses existed. On the other hand, 

measured strain ranges were slightly or not changed at weld toes VN-32, VN-32', and 

PL-23. Though the strain range at weld toe PL-23 changed slightly after the crack on it 

was detected, it could be affected not only by the crack at weld toe PL-23 but also the 

crack at weld toe PL-24. The less-sensitive strain at weld toe PL-24 might be related to 

the compression residual stress, which was estimated to exist at weld toes similar to 

weld toe PL-24 as the results of the static loading tests. The strain measurement points 

at weld toes VN-32 and VN-32' were at some distance away from the cracks and could 

result in less sensitivity of the strain ranges. Unfortunately, strains at weld toe PL-14 

were not measured.  

   

4.4.2. Running wheel fatigue test results 

  Table 4-4 includes running wheel fatigue test results. No changes were observed at 

the longitudinal-rib to transverse-rib connections after all running wheel fatigue tests of 

model V and PL. The measured strains at the evaluated weld toes in longitudinal-rib to 

transverse-rib connections were also not changed during the fatigue tests. However, the 
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cracks at rib-to-deck joints of model V were caused by the constant amplitude fatigue 

test and propagated during the running wheel fatigue tests. The detail of the rib-to-deck 

joint crack of model V is shown in Appendix-B. 

 

 

 

4.5. Fatigue assessment 

4.5.1. Fatigue strength assessment under critical loading conditions 

  Fig. 4-12 shows the relations between load ranges and the fatigue test results of the 

longitudinal-rib to transverse-rib connections. This figure also shows the design curve, 

which is connected to a point at 10
7
 cycles of the fatigue design load with a slope of 

-1/3 under the assumption that a constant amplitude fatigue limit can connect to a point 

at 10
7
 cycles. The design curve shows one possibility and should be determined for each 

project. The design load was determined from the Japan Road Association (2014).  

Though Fig. 4-12a has a vertical axis of the load range in the fatigue tests, vehicle 

loads can move and cause larger stress ranges than the stress range caused during the fa-

tigue tests, as described above. Therefore, in Fig. 4-12b, the load ranges were factored 

to express the magnitude of vehicle loads that would cause the stress ranges at the eval-

uated weld toes, as in the following equation. 

 

test

h

testh
PP 




'

'
'

,



  
4-2 

 

where P', Ptest represent the factored load range and the load range in the fatigue test, 

respectively, and 'h, and 'h,test represent the hot-spot stress ranges caused by 100 kN 

moving position loads and 100 kN fatigue tests based on the FEA results, respectively.  

  In Fig. 4-12b, the fatigue test results of connections VN and PN were plotted above 

the design curve and those of connections US and PS were plotted below the design 

curve. Though the fatigue test result of connection UN was plotted below the design 

curve, it was run-out data. Therefore, connections VN and PN could achieve 10
7
 cycles 

of the fatigue design load, and connections US and PS could not. Connection UN could 

possibly have higher fatigue strength than the design curve, but more investigations are 

required to confirm its fatigue strength.  

  However, fatigue cracks were initiated at rib-to-deck joints of models U and V plotted 

below the design curve (Fig. 4-12b). Therefore, orthotropic steel decks with connection 

VN cannot achieve the objective fatigue life, though its longitudinal-rib to trans-

verse-rib connection had high fatigue resistance.  

  Fig. 4-12b shows the factored load range as the vertical axis. This figure indicates 

that connection PS would have lower fatigue strength than the design curve, which is 

different from the result in Fig. 4-12a. Therefore, the fatigue test without taking account 

of moving of the load position could result in incorrect fatigue strength. 

 

4.5.2. Hot-spot stress applicability to longitudinal-rib to transverse-rib connections 

  Fig. 4-13 shows the relations between 'h and fatigue lives (Nf) of the longitudi-

nal-rib to transverse-rib connections, which were obtained from the FEA and the fatigue 

tests. The figures show not only the results of failure but also the results of run-out in 
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the plot above JSSC-E class. All results were conservative results against JSSC-E class, 

though some results showed excessively high fatigue strength. Therefore, the fatigue of 

the longitudinal-rib to transverse-rib connections could be conservatively evaluated by 

the hot-spot stress approach combined with the factors for the thickness and the bending 

effect, and the design curve of JSSC-E class. 

  Though fatigue cracks were initiated from weld toes PS-14 and PS-24, these cracks 

would be not initiated in actual bridges. The results of weld toes PS-14 and PS-24, 

shown in Fig. 4-13 as open rectangular marks, were located at lower fatigue strengths 

than the results of weld toe PS-23, shown as solid rectangular marks. These results 

seems to indicate that the fatigue strength of connection PS could be determined by 

weld toes similar to PS-14 and PS-24, which are deck-plate side weld toes of box welds 

at the upper ends of the slits rather than weld toe similar to PS-23, which are trans-

verse-rib side weld toes of the same welds. However, almost no cracks have been 

reported at the deck-plate side weld toes in investigations of actual bridges (Mori 2010). 

Those unexpected fatigue crack initiations (PS-14, -24) may be partly due to the differ-

ences of loads and surfacing between the fatigue tests and the actual bridges. The loads 

of the fatigue tests were located at a fixed position and caused tension cyclic stresses on 

weld toes PS-14, PS-24 and PS-23, whereas vehicle loads on an actual bridges can 

cause stress reversals on the weld toes. The surfacing would reduce stresses of weld toes 

near the deck plates, but were ignored in this study mainly because of the uncertain 

stiffness of surfaces and the lesser effect on stress reductions for longitudinal-rib to 

transverse-rib connections, as described in the literature review of this dissertation. 

Further investigations are required to clearly understand the result of connection PS. 

  The fatigue strength of connection PN can be determined by the cracks on the trans-

verse-rib side weld toes of the box welds at longitudinal-rib to transverse-rib joints, 

even though the longitudinal-rib side weld toes have higher hot-spot stress ranges. The 

results of the transverse-rib side weld toes, PL-31 and PL-41, show lower fatigue 

strengths than the results of the longitudinal-rib side weld toes, PN-42, PL-32, and 

PL-42 (Fig. 4-13). In addition, the transverse-rib side weld toes, PL-21, had higher 

hot-spot stress in experiments than that in the FEA, especially when compared to the 

longitudinal-rib side weld toe PL-22, which had lower hot-spot stress in the experiments 

than that in the FEA. The longitudinal-rib side weld toes had similar detail to weld toe 

PS-23, all of which showed high fatigue strength and can be classified into type B hot 

spots. 

  Fig. 4-14a–c show 'h – Nf relations of each type of hot spots in the longitudinal-rib 

to transverse-rib connections as well as in literature data from Chapter 2. The literature 

data of in-plane gusset joints are plotted in Fig. 4-14b as reference, but were not used 

for comparisons because the type B hot spots investigated in this study were on the 

edges of plates welded to other plates with box welds and are geometrically different 

from the hot spots of in-plane gusset joints. The results of type A and type C hot spots in 

the longitudinal-rib to transverse-rib connections were plotted during 95%–5% survival 

ranges of literature data regardless of the tension or the compression working stresses. 

Therefore, the factored hot-spot stress approach provides accurate estimation for type A 

and C hot spots. The compression working stress could result in fatigue cracks due to 

tensile residual stresses observed in the strain measurements during the fatigue tests. 

However, the results of type B hot spots in the longitudinal-rib to transverse-rib connec-

tions were plotted above the 5% survival line of the literature data, regardless of the 
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tension or compression working stresses. The high fatigue strength evaluation might be 

affected by compression residual stresses, which were observed in the strain measure-

ments during the static loading tests. However, further investigations are required to 

confirm existences and mechanisms of the compression residual stress at type B 

hot-spots. In addition, further investigations on weld shapes would support further un-

derstanding of the fatigue test results. 

 

 

4.6. Summary 

This chapter investigated the actual fatigue strength of the longitudinal-rib to trans-

verse-rib connections and applicability of the factored hot-spot stress approach by 

taking account of the thickness and the bending effects by means of fatigue tests on 

deck panel models. Since vehicle loads can move and cause higher stress ranges at weld 

toes than can fixed position loads, the fatigue strength of the longitudinal-rib to trans-

verse-rib connections were tested under critical loading conditions that cause maximum 

or minimum factored hot-spot stresses on the weld toes. The applicability of shell ele-

ment models was also investigated by comparisons between measured and computed 

local stresses. 

 

1) The fatigue strength of non-slit connections with V-ribs and plate ribs satisfied the 

fatigue strength equivalent to 10
7
 cycles of the fatigue design load (T load), whereas 

the fatigue strength of the rib-to-deck joints of the U-rib and V-rib models were in-

sufficient to 10
7
 cycles of the fatigue design load under the condition that a 15% 

strain drop measured on rib-to-deck weld beads was regarded as Nf.  

2) The factored hot-spot stress approach with the design curve of JSSC-E class pro-

vides conservative estimations for the fatigue strength of longitudinal-rib to 

transverse-rib connections. The estimations for type A and C hot spots are accurate 

enough, though the estimations for type B hot spots are excessively conservative. 

3) Finite element analyses with the shell element models simulate stress conditions 

around weld toes in the longitudinal-rib to transverse-rib connections except for 

weld toes on plate edges of connections PS and PN, which have higher stresses than 

those computed by the finite element analyses. 

4) Compressive residual stresses existed on some weld toes on plate edges and affected 

the fatigue test results. 
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Table 4-1 Deck panel models for fatigue tests 

Model 
 Longitudinal-rib  Connection 

 Cross section Span length [mm]  Type Name 

U  U-rib 2500  Slit and non-slit US and UN 

V  V-rib 2500  Non-slit VN 

P  Plate rib (h235 × t16 mm) 1666  Slit and non-slit PS and PN 

PL  Plate rib (h256 × t16 mm) 2250  Non-slit PN27 

 

 

 

 

 

Table 4-2 Weld root gaps and leg lengths 

Model 

(Connection) 

Location 

number 

Gap 

[mm] 

Leg length [mm] 
Location 

S1
a
 S2

b
 

U 1 0.5 6.2 
 

 
 

a
S1: Longitudinal-rib side 
b
S2: Transverse-rib side 

(US) 2 0.9 6.5 
 

 
3 1.5 7.0 

 

 
4 0.6 7.0 

 
U 5 0.5 8.0 

 
(UN) 6 1.5 8.0 

 
V 30 1.6 7 

 
(VN) 3 1.0 8.5 

 

 
4 1.7 8.5 

 
P 1 2.5 9 

 
(PS) 2 2.5 9 

 

 
3 2.5 9 

 

 
4 2.6 9 

 

 
5 1.4 8 

 
P 30 1.0 10 

 
(PN) 3 2.0 11 

 

 
3* 0.0 9 

 

 
40 1.9 11 

 

 
4 2.9 11 

 

 
4* 0.0 11 

 
PL 20 1.8 16.5 14.5 

(PN24) 2 1.7 9 11 

 
2* 2.0 10 12 

 
30 2.7 13.5 13 

 
3 3.1 10 10 

 
3* 0.4 9 11 

 
40 1.7 13 12 

 
4 2.5 10 10 

 
4* 1.1 10 11 

 

  

1 2 3 4
5 6

US US UN

3

30

4

VN

2 3 4 5

PS

PN

1

2 2*
20

3 3*
30

4 4*
40
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Table 4-3 Fatigue test procedure 

Model Test type 

Load 

Case 
Range 

[kN] 

Frequency 

[Hz] 

Cycles 

[million] 

U Constant amplitude USa 100 2.6 3.00 

 
Constant amplitude UWa 75 2.5 3.00 

 
Constant amplitude UNa 100 2.7 4.62 

V Constant amplitude VWa 75 5.1 5.50 

 
Constant amplitude VNa 120 3.5 5.00 

   
245 2.8 3.00 

 
Running wheel VNra 198 0.09 0.50 

 
Running wheel VNrb 198 0.09 0.17 

P Constant amplitude PSa 195 3.0 5.35 

   
290 3.0 5.30 

 
Constant amplitude PNa 205 3.0 5.40 

   
405 1.6 1.04 

PL Running wheel PLr 198 0.12 2.00 

 
Constant amplitude PLa 846 1.0 0.49 

 
Constant amplitude PLb 623 1.2 0.86 

 

 

 

 

Table 4-4 Fatigue test results 

Model 

Load  

Status 
Case 

Rage 

[kN] 

Cycles 

[million] 
 

U USa 100 0.70  Failure at weld toe US-22 

 
USa 100 1.48  Failure at weld toe US-32 

 
UWa 75 0.20  15 % strain drop at rib-to-deck joints (UW-35) 

 
UWa 75 0.35  15 % strain drop at rib-to-deck joints (UW-45) 

 
UNa 100 4.62  No crack observed 

V VWa 75 2.00  15 % strain drop at rib-to-deck joints (VW-45') 

 
VWa 75 2.25  15 % strain drop at rib-to-deck joints (VW-35') 

 
VNa 245 3.00

a
  Failure at weld toe VN-32 

 
VNa 245 3.00

a
  Failure at weld toe VN-32' 

 
VNra 198 0.50  No crack observed

a
 

 
VNrb 198 0.17  No crack observed 

P PSa 195 5.35  No crack observed 

 
PSa 290 1.25  Failure at weld toe PS-14 

 
PSa 290 2.33  Failure at weld toe PS-23 

 
PSa 290 3.48  Failure at weld toe PS-24 

 
PNb 205 5.40  No cracks observed 

 
PNb 410 1.04  No cracks observed 

PL PLr 198 2.00  No cracks observed 

 
PLa 846 0.41  Failure at weld toe PL-31 

 
PLb 642 0.86  Failure at weld toe PL-41 

a
 Though the cracks were detected after 0.05 million cycles of the wheel running fatigue test, the cracks 

were considered to be caused by load VNa  
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Fig. 4-1 Models and load cases 
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Fig. 4-1 Models and load cases (continue) 
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Fig. 4-2 Pictures of the connection between the plate-rib and the non-slit transverse-rib 

of model PL, before and after welding 

 
 

a) Before welding b) After welding 
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Fig. 4-3 Names of hot-spots 
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Fig. 4-4 Pictures of fatigue tests 
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Fig. 4-5 Strain gauge locations (Gauges at US21 and US22 as examples) 
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Fig. 4-6 Measured and computed stresses at surfaces near to hot-spots 
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Fig. 4-7 In-elastic strain behaviors at weld toes 
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Fig. 4-8 Fatigue crack locations 
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Fig. 4-9 Pictures of fatigue cracks 
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Fig. 4-9 Pictures of fatigue cracks (continue) 
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Fig. 4-10 Fatigue crack lengths 
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Fig. 4-11 Strains at cracked weld toes 
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Fig. 4-11 Strains at cracked weld toes (continue) 
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Fig. 4-11 Strains at cracked weld toes (continue) 
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Fig. 4-12 Fatigue assessment of longitudinal-rib to transverse-rib connections in format 

of load ranges 
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Fig. 4-13 Relationships between 'h and Nf 
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Fig. 4-14 Relationships between 'h and Nf for each types of hot-spots 
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Fig. 4-14 Relationships between 'h and Nf for each types of hot-spots (continue) 
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5. Fatigue life estimation under actual traffic 

conditions 

5.1. Introduction 

Orthotropic steel decks, even though they have fatigue problems at welded connec-

tions, are required for long-span bridges, city expressways, and re-decking of 

deteriorated RC-decks. Fatigue cracks at longitudinal-rib to transverse-rib connections 

accounted for approximately 40% of all cracks in an investigation of bridges in service. 

Therefore, improving the longitudinal-rib to transverse-rib connections is important 

(Mori ed. 2010). Several longitudinal-rib to transverse-rib connections have been pro-

posed for fatigue improvement (Katsumata et al. 2000; Ohashi et al. 2000; Kolstein 

2001; Taskopoulos et al. 2003, Conner and Fisher 2006, Miki and Suganuma 2014; 

Hanji et al. 2013). However, these investigations do not sufficiently clarify the critical 

loading conditions for fatigue of the connections. Loadings are a distance away from the 

connections but cause maximum strain at the connections. Because traffic loadings in 

service could run in the longitudinal direction and each vehicle could have a different 

transverse position (Leonard 1969; Takada et al. 2009a), the fatigue evaluation should 

take account of the critical loading conditions (Miki et al. 1995). 

  Though Chapter 3 clarified the factored hot-spots stress ranges ('h) of several lon-

gitudinal-rib to transverse-rib connections, the relations between 'h and fatigue lives 

are uncertain. Chapter 3 described the finite element analyses and found the load posi-

tions causing maximum and the minimum factored hot-spot stresses on the 

longitudinal-rib to transverse-rib connections (POSmax, POSmin) with U-ribs, V-ribs, and 

plate ribs, and the slit and the non-slit transverse-rib webs. Since POSmax and POSmin 

were on different lanes in all cases of longitudinal-rib to transverse-rib connections, 

'h cannot be caused by one vehicle but can be caused by at least two vehicles. Since 

those vehicles run on transversely distributed positions, 'h occurs at certain probabili-

ties. Therefore, fatigue lives obtained by fatigue tests simulating the most severe 

conditions for longitudinal-rib to transverse-rib connections are smaller than fatigue 

lives of longitudinal-rib to transverse-rib connections in service.  

  From the background above, the following objectives of this chapter were estab-

lished. 

1) Investigate the fatigue lives of the longitudinal-rib to transverse-rib connection under 

traffic loading with transversely distributed running positions. 
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5.2. Monte Carlo simulations for fatigue life estimations 

5.2.1. Evaluated weld toes 

  The weld toes in the deck panel models presented in Chapter 3 were evaluated. Fig. 

5-1 shows evaluated weld toes for fatigue life simulations. The evaluated weld toes 

were expected to have the lowest fatigue strength of the models based on the factored 

hot-spot stress ranges computed in Chapter 3 and the fatigue test results in Chapter 4. 

The transverse-rib side weld toes (weld toe PN-31) were selected for the plate-rib 

non-slit connection (connection PN), since fatigue cracks were initiated at the trans-

verse-rib side weld toes, even though the longitudinal-rib side weld toes had larger 

hot-spot stress ranges in the fatigue tests and would have larger hot-spot stress ranges in 

actual bridges. 

  Fig. 5-1 shows the relations between positions of the double tire load and the factored 

hot-spot stresses (influence surfaces), which were computed in Chapter 3. In this chap-

ter, the factored hot-spot stresses caused by load models were calculated from the 

influence surface. 

 

5.2.2. Simulation cases 

  Table 5-1 shows simulation cases, variables of which were load models, transverse 

distributions of tire positions. Fig. 5-2 and Table 5-2 show load models and total 

weights of vehicle models. Only the left side tires of vehicles were simulated, since the 

influence areas for the hot-spot stresses were not so wide. 

  Cases S1–S3 and T1 adopted simplified one axle and tandem axles of double tires, 

respectively. Case S1–S3 was based on the design fatigue load (T load) of Japanese 

specifications (Japan Road Association 2014). Since the T load is a simplified design 

load and assumes a combined axle from tandem axles, case T1 adopted tandem axles to 

investigate the effects of load simplification on the fatigue life estimation results. 

Transverse distributions of tire positions followed normal distributions with standard 

deviations of 0, 165, and 330 mm (Fig. 5-4). Since the transverse distribution depends 

on lane width (Leonard 1969; Takada et al. 2009a), the effect of the distribution width 

was investigated. The basic standard deviation, 165 mm, was determined from the 

measurement of actual traffic conditions in Hanshin expressways (Takada et al. 2009a). 

  Cases A1–A5 adopted a traffic model including two-, three- and four-axle vehicles in 

order to estimate actual traffic conditions. The dimensions of vehicles were determined 

based on previous research (Miki et al. 1986). The weights of the vehicles followed 

log-normal distributions based on traffic measurement in one of the heaviest traffic 

roads in Tokyo (Tamakoshi et al. 2006).  

  The hot-spot stress ranges can change depending on dimensions such as thickness of 

plates in orthotropic steel decks or span length of the longitudinal ribs. On the other 

hand, the shapes of the influence surfaces might not change if the shapes of the longitu-

dinal-rib to transverse-rib connections are constant. Therefore, the influence surfaces of 

the vertical ('h) axis were factored by 0.8, 0.9, 1.1 and 1.2 to investigate the effects of 

the hot-spot stress ranges on fatigue life estimation results. 

 

5.2.3. Fatigue damage computation procedure 

  Fig. 5-5 shows the Monte Carlo simulation procedure to estimate fatigue lives under 

each simulation case. First, the center of the transverse tire distribution (yc) was set to 
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-720 mm. Second, vehicles were randomly generated with the weight and the transverse 

positions following each of the distributions. The stress histories caused by the vehicles 

were calculated by linear interpolations of the influence surfaces. Equivalent axles were 

also counted by the following equation. 

 

 3_,, / loadTiaxleiaxleeq WWn   5-1 

 

where neq,axle represents the number of axles equivalent to T load, and Waxle,i and WT_load 

represent the weight of each axle of a vehicle and T load, respectively. When the num-

ber of vehicles (nvehicle) reached 20,000, the stress histories were converted to fatigue 

damage (D) by rain-flow counting, as described below. The allowable average daily 

truck traffic per lane (ADTTal) and the equivalent axles of ADTTal (ADEAal) for 

100-year fatigue lives were estimated using the fatigue damage by the following equa-

tions. 
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5-2a 

 

5-2b 

 

ADTTal = n represents the weld toes having a 100-year fatigue life if the average daily 

truck traffic is equal to or lower than n. ADEAal = m represent the weld toes having a 

100-year fatigue life if the average daily axle equivalent to the T load is equal to or 

lower than m. 

  The rain-flow counting procedure described by Endo et al. (1981) was used to calcu-

late fatigue damage accumulations through variable amplitude stress histories. First, the 

stress histories were converted into histories of peak-valley differences (A0, A1, ..., An), 

which represent the stress ranges of each monotonic increasing or decreasing sequence 

of the stress histories. Then, the peak-valley differences were converted to fatigue dam-

age accumulations based on Miner’s rule with the cut-off limit of JSSC-E class for 

variable amplitude stress (28 N/mm
2
). 

  The abovementioned simulation process was conducted on a developed program 

written in Ruby. 

 

 

5.3. Estimated fatigue lives 

5.3.1. Effect of transverse distributions of tire positions 

  Table 5-3 shows the results of Monte Carlo simulations in formats of allowable aver-

age daily truck traffic per lane for 100-year fatigue lives (ADTTal) and the equivalent 

axles (ADEAal).  

  Fig. 5-6 shows ADTTal of simulation cases for simplified load models with the stand-

ard deviations of the transverse distribution being 0, 165, 330 mm. ADTTal for all hot 

spots investigated were increased as the transverse distribution expanded. Therefore, the 
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narrower transverse distribution could be more severe for the fatigue of longitudinal-rib 

to transverse-rib connections. In addition, the standard deviation of 165 mm could be 

smaller than usual but would provide safe estimations. 

  Fig. 5-7a shows the transverse distributions of tire positions that caused minimum fa-

tigue lives for US32 in each of the simulation cases, S2 and S3. Fig. 5-7b shows the 

front view of the influence surface of US32. The center of the transverse distribution 

(yc) was the lane where maximum factored hot-spot stress ranges were caused by the 

passing of one T load in the case that the standard deviation was 165 mm, whereas the 

maximum factored hot-spot stress ranges caused by the passing of several T loads ('h) 

can be larger. On the other hand, yc was located between lanes for the maximum and the 

minimum factored hot-spot stresses of the influence surfaces ('h,max, 'h,min) in the case 

that the standard deviation was 330 mm. This result means that the stress ranges by one 

vehicle are dominant for the fatigue of longitudinal-rib to transverse-rib conditions in 

the case that the transverse distributions of tire positions are limited, for example, due to 

a narrow road width. 

 

5.3.2. Allowable ADTT under actual traffic conditions 

  Fig. 5-8 shows the fatigue life estimation results for each of simulation cases, S2, T1, 

and A3, all of which had a transverse distribution with the standard deviation of 165 

mm.  

  Connection PN, which was proposed as a fatigue resistant structure in Chapter 3, was 

evaluated to be applicable to ADTT of approximately 1,800 (PN-32) and 9,500 (PN-31) 

vehicles. Though the estimated fatigue life of PN-31 was smaller than that of PN-32, fa-

tigue cracks were initiated from the PN-31 transverse-rib web side weld toes. It should 

be noted that hot-spot stresses measured at PN-32 were larger than those of PN-31 even 

in fatigue tests. From the fatigue test results, the fatigue lives of connection PN could be 

determined from fatigue cracks at PN-31. Therefore, ADTTal of connection PN could be 

estimated as approximately 9,500. 

  The results of simulation case A3 showed the largest ADTTal, which mean the longest 

fatigue lives, for all hot spots investigated, and simulation cases T1 and S2 showed the 

second largest and the last, respectively. Therefore, the simplified load model, T load, 

provides a conservative fatigue estimation compared to more detailed traffic models. 

The simplified model was applied in Chapter 3, but it resulted in a conservative estima-

tion, though the tandem axle is common for heavy axles. On the other hand, ADEAal 

was ordered differently from hot spot to hot spot. The order might be affected by the 

shapes of the influence surfaces, which were different for all hot spots investigated.  

 

5.3.3. Relations between the hot-spot stress ranges and the fatigue lives 

  Fig. 5-9 shows the relations between the factored hot-spot stress ranges and the fa-

tigue lives from the results of simulation case A1-5, in which the influence surfaces 

were factored by 0.8, 0.9, …, 1.2. Hence, the figure shows five plots for each hot spot. 

The resulting fatigue lives are expressed in the format of ADTTal and ADEAal for 

100-year fatigue lives. By using Fig. 5-9 as the fatigue design curve, longitudinal-rib to 

transverse-rib connections could be designed. The required factored hot-spot stress 

ranges can be determined from traffic conditions and Fig. 5-9, and structural dimensions 

can be determined to satisfy the obtained factored hot-spot stress ranges. It should be 

noted that the design procedure above applies only to the connections and traffic condi-
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tions investigated in this study. 

  ADTTal of the non-slit connections reached approximately 4,000 vehicles or 300 axles 

or more. These connections could have 100-year fatigue lives for many of the heavy 

traffic roads. ADTTal and ADEAal which correspond to the constant amplitude fatigue 

limit of JSSC-E class (62 N/mm
2
) for UN32, VN32, PN32, and PN31, were approxi-

mately 2,000, 4,000, 4,000, and 7,000 vehicles, and 150, 300, 300, and 600 equivalent 

axles. As described in Chapter 4, the fatigue tests resulted in no fatigue crack initiations 

from PN32, even though the hot-spot stresses were higher than those of PN31 where 

cracks were initiated. From the test results, ADTTal and ADEAal of non-slit plate-rib 

connections could be those of PN31. 

  The relations between the factored hot-spot stress ranges and ADTTal or ADEAal de-

pended on the hot spots. For example, ADTTal of PN31 was approximately four times 

larger than those of VN32 in similar stress ranges. PN31 had an influence surface with a 

peak at only one side about the center transverse rib, whereas VN32 had peaks at both 

sides about the center transverse rib (Fig. 5-1). The VN32 influence surface could cause 

a stress increase by the tandem axles, whereas the PN31 influence surface could not. In 

addition, ADTTal by the tandem axles was larger than that by the simplified axle in the 

results for PN31, whereas the order was reversed for VN32. From these results, the dif-

ference between the influence surfaces of PN31 and VN32 could affect the difference of 

'h – ADTTal relations. 

 

 

 

5.4. Summary 

  This chapter conducted Monte Carlo simulations to investigate the relations between 

the factored hot-spot stress ranges and fatigue lives of the longitudinal-rib to trans-

verse-rib connections under traffic loading with transversely distributed running 

positions. The simulations were based on the influence surfaces of the factored hot-spot 

stresses on the longitudinal-rib to transverse-rib connections and the investigations of 

traffic on bridges in service. As results, the following results were obtained 

1) Actual traffic simulations showed that the allowable average daily truck traffic for 

connection PN was 9,500 vehicles.  

2) Fatigue lives of longitudinal-rib to transverse-rib connections can be designed by the 

hot-spot stress approach and traffic simulations. 

3) Fatigue lives were affected by not only the factored hot-spot stress ranges but also 

the shapes of the influence surfaces. 

4) Fatigue lives of longitudinal-rib to transverse-rib connections decrease as the trans-

verse distribution of tire positions becomes narrow. 
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Table 5-1 Simulation cases 
Case Traffic model Distribution

a
 [mm] Kis

b
 

S1 S 0 1.0 

S2 S 165 1.0 

S3 S 330 1.0 

T1 T 165 1.0 

A1 A 165 0.8 

A2 A 165 0.9 

A3 A 165 1.0 

A4 A 165 1.1 

A5 A 165 1.2 
a
Standard deviation of transverse tire distribution, 

b
Factor for the hot-spot stresses of the influence surfaces, 

c
Taking account of cut off limit of JSSC-E class for variable amplitude 

 

 

 

 

 

Table 5-2 Traffic models 

Traffic model Vehicle model Frequency 
Vehicle weight 

W0 [kN]
a
 Wmin [kN]

b
  c  d

S Simplified fatigue load 1.00 200 - - - 

T Tandem fatigue load 1.00 200 - - - 

A Two axel truck 0.55 56 16 1.75 0.17 

 Three axel truck 0.29 154 37 2.19 0.16 

 Four axel trailer 0.16 216 50 2.33 0.21 
a
Most frequent value, 

b
Minimum value, 

c
Mean of log-normal distribution, 

d
Standard deviation of log-normal distribution 

 

 

 

 

 

Table 5-3 Simulation results 

 
ADTTal 

a
  EQAXal 

b
 

 
US UN VN PS PN  US UN VN PS PN 

S1 7 108 367 20 194  7 108 367 20 194 

S2 14 168 559 26 235  14 168 559 26 235 

S3 16 234 828 27 345  16 234 828 27 345 

T1 49 405 894 92 1885  12 101 223 23 471 

A1 332 4020 15263 579 28839  27 344 1252 48 2411 

A2 223 2712 8597 398 15656  19 219 722 33 1316 

A3 152 1735 5617 277 9513  13 146 474 24 794 

A4 113 1267 3671 211 6241  10 105 312 17 518 

A5 89 894 2543 160 4120  7 75 214 13 347 
a
 Allowable average daily truck traffic per lane for 100 year fatigue lives, 

b
 Allowable average daily equivalent axles per lane for 100 year fatigue lives (equivalent to 200kN axle) 
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Fig. 5-1 Influence surfaces of evaluated hot-spots 
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Fig. 5-2 Load models 
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Fig. 5-3 Comparison of model probability distribution of vehicle load and measured 

values 
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Fig. 5-4 Transverse distributions of tire positions, modeled probability distribution and 

measured values 
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Fig. 5-5 Mote-Carlo simulation procedure 
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Fig. 5-6 ADTTal for each transverse distributions of tire positions 
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Fig. 5-7 Relationships between transverse distributions of tire positions and the influ-

ence surface of US32 
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Fig. 5-8 Fatigue life estimation results for each traffic models 
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Fig. 5-9 Relationships between fatigue lives and factored hot-spot stress ranges 
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6. Conclusion 

This study investigated the fatigue strength and the fatigue lives of several types of 

orthotropic steel decks and proposed a structure with high fatigue strength after clarify-

ing the critical loading conditions for the connections. The critical loading conditions 

were investigated by the factored hot-spot stress approach and accounting for moving 

vehicle loads. The fatigue strength of the connections was confirmed by fatigue tests 

with panel type specimens under critical loading conditions. The fatigue lives were es-

timated by simulating traffic loadings with transversely distributed running positions. 

From the investigations above, orthotropic steel decks with connection PN, which is the 

connection of a plate rib and non-slit transverse rib, were found to achieve 100-year fa-

tigue lives even under heavy traffic conditions. Furthermore, the following results were 

obtained in the investigations.  

 

2-1) The hot-spot stress approach can be applied for fatigue assessment of longitudi-

nal-rib to transverse-rib connections, where three-dimensional deformations are 

caused and hot spots move as loading positions move. 

2-2) A thickness factor with an exponent of 0.25 and bending stress reduction factor 

of 0.8 can be applicable to the hot-spot stress approach. The thickness effect 

could be extended to plates thinner than 25 mm. In addition, the width between 

the lower and upper 95% survival curves of fatigue data in terms of factored 

hot-spot stresses was 30% smaller than that in terms of hot-spot stresses.  

2-3) JSSC-E class can provide safe estimations of fatigue strength and fatigue lives 

for the factored hot-spot stresses, except for type C hot spots under a relatively 

high stress range approximately equal to or higher than 100 N/mm
2
 and type B 

hot spots under stress ranges lower than the constant amplitude fatigue limit of 

JSSC-E class. 

 

3-1) Critical loading positions causing maximum and minimum hot-spot stresses on 

longitudinal-rib to transverse-rib connections are located at a distance away from 

the evaluated connections. Furthermore, those positions are different depending 

on the longitudinal-rib type and the slit existence on the transverse-rib webs. 

3-2) Eliminating the slit on the transverse-rib webs can improve the fatigue strength 

of the longitudinal-rib to transverse-rib connections. The hot-spot stress ranges 

of connection UN and PN were smaller than those of US and PS by 65% and 

58%, respectively, where the inner diaphragms were attached in the U-ribs at 

400 mm from the transverse-rib. 

3-3) Using V-ribs would further enhance the fatigue strength of non-slit connections. 

The hot-spot stress range of connection VN was 39% smaller than that of con-

nection UN. 

3-4) Hot-spot stresses of the connections between U-ribs and transverse-rib webs are 

significantly affected by the existence of inner diaphragms adjacent to the con-

nections. The hot-spot stresses ranges of connection US and UN were increased 

and decreased by the inner diaphragms. 
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4-1) Clarify the fatigue strength of longitudinal-rib to transverse-rib connections by 

fatigue tests simulating critical loading conditions. 

4-2) Investigate the applicability of the factored hot-spot stress approach to longitu-

dinal-rib to transverse-rib connections. 

4-3) Validate shell element FEA applicability by comparing the stress conditions of 

analyses and experiments to confirm the validity of critical loading conditions 

determined by FEA and applied to fatigue test conditions. 

 

 

5-1) Actual traffic simulations showed that the allowable average daily truck traffic 

for connection PN was 9,500 vehicles.  

5-2) Fatigue lives of longitudinal-rib to transverse-rib connections can be designed 

by the hot-spot stress approach and traffic simulations. 

5-3) Fatigue lives were affected by not only the factored hot-spot stress ranges but 

also the shapes of the influence surfaces. 

5-4) Fatigue lives of longitudinal-rib to transverse-rib connections decrease as the 

transverse distribution of tire positions becomes narrow. 
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Appendix-A Fatigue data used in Chapter 2 

A.1. Corrected literature fatigue data 

  Table A-1 and Table A-2 show fatigue data of the non-load-carrying cruciform and 

the out-of-plane gusset joints, and Fig. A-1 shows these models. Though materials of fa-

tigue data were varied from mild to high strength steels such as HT780 or HT80 

(Shimokawa 1985; Anami 2001), the effect of material strength on the fatigue strength 

of welded joints was not significant. The load types were axial, and 4- and 3-point 

bending cyclic loads had stress ratios of zero or larger than zero (Fig. A-2). The num-

bers of models in the table are not the numbers of models in the literature, but are the 

numbers of models used to calculated fatigue strength at 2.0 × 10
6
 cycles in this study, 

because data of fatigue lives shorter than 10
5
 cycles and run-out were eliminated, as de-

scribed in the following paragraph. In addition, fatigue data sets with fatigue lives only 

shorter than 10
6
 cycles were not used in this study because those fatigue data sets may 

not have long enough cycles to estimate fatigue strength at 2.0 × 10
6
 cycles. 

  The mean fatigue strength of 2.0 × 10
6
 cycles in terms of the nominal stress (f) was 

determined based on the IIW recommendation (Hobbacher 2007). The fatigue strength 

was calculated with linear regressions of the literature data, where fatigue lives were 

regarded as dependent variables, and data of fatigue lives shorter than 10
5
 cycles and 

run-out were eliminated. Since short fatigue lives might indicate a different result than 

that of high cycle fatigue data, test results under high stress ranges that could cause fa-

tigue lives shorter than 10
5
 cycles were eliminated from analyses in this study. On the 

other hand, it was indicated that run-out data should be used to estimate mean curves of 

the test results in the S-N diagram (Marquis). However, since some fatigue data sets did 

not include run-out data, all fatigue data sets were analyzed without run-out data. Those 

analyses would provide conservative estimations of the mean curves. 

  Fatigue strength at 2.0 × 10
6
 cycles in terms of the hot-spot stress (f,h) were deter-

mined by multiplying stress concentration factors (SCFs), ratios of hot-spot stresses to 

nominal stresses, into the fatigue strength in terms of nominal stresses. In the case that 

the literature included enough data of hot-spot stresses, f, h was determined by linear 

regressions of the data, with elimination of data of fatigue lives shorter than 10
5
 cycles 

and run-out. 

  Table A-3 shows fatigue data of component models with fatigue crack initiation 

points at the plate edges, which means type B hot spots. Fatigue tests were conducted 

with in-plane gusset joints by Yamada (1984) and Kondo (2002) and gusset models by 

Miki (1994) and Fricke (2006) (Fig. A-3). The literature used different crack lengths as 

fatigue failure, Nf, as twice of the surface crack length, as shown in Table A-3. Cracks at 

plate edges were treated as half cracks in this study. 

  Table A-4 shows fatigue data of structural models with fatigue crack initiation points 

at three types of hot spots, type A, -B and -C. Fatigue data of type A hot spots is a 

bracket model for ships, tested by Yagi (1991), and a bridge plate girder model having 

an out-of-plane gusset, tested by Kim (2013) (Fig. A-4 and Fig. A-5). Fatigue data of 

type B hot spots is an open-rib to transverse-rib connection model for orthotropic steel 
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bridge decks, tested by Yamaoka (2010) (Fig. A-6). Fatigue data of type C hot spots is 

pipe-to-pipe K-joints for truss bridges, tested by Schumacher (2006), and rectangular 

pipe-to-pipe T joints, tested by Cheng (2015) (Fig. A-7). The literature used different 

crack lengths as fatigue failure, Nf, as shown in Table A-4.  

 The 95% survival fatigue strength for the data sets was determined based on the IIW 

recommendation (Hobbacher 2007).  

 

 

 

A.2. Computed stress concentration factors 

  Fig. 2-6 shows graphs of stress concentration factors (SCFs) of cruciform, T, and 

out-of-plane gusset joints as the vertical axis and thicknesses and width-thickness ratios 

of component joint models as the horizontal axis. Table A-5 and Table A-6 summarize 

the numerical data.  

 

 

 

A.3. Thickness effects investigation 

Fig. A-8a and b show the relations between corrected thicknesses and fatigue strength 

of cruciform joints in terms of nominal and hot-spot stress, respectively, and Table A-5 

summarizes the fatigue strengths. The corrected thicknesses were determined by Equa-

tion 2-2. Fig. A-8 also shows the mean lines obtained by linear regressions. 

The thickness effects on axially loaded cruciform joints existed down to 6-mm thick-

ness with exponents of 0.25 and 0.23 in terms of nominal and hot-spot stress (Fig. A-8a, 

b). The relation in terms of hot-spot stress was similar to that of nominal stress due to 

small stress concentrations of cruciform joints regardless of plate thickness. The result 

that the thickness effect on cruciform joints was extended to relatively thinner plates 

was also suggested in previous research (Miki 1987; Gurney 1995; Kihl and Sarkani 

1997). 

The thickness effects on bending loaded T joints also existed down to 6-mm thickness, 

but its exponents, which were 0.34 and 0.35 in terms of nominal and hot-spot stress, re-

spectively, were larger than those under axial loads. The steeper thickness exponents 

mean that the fatigue strength of plates thinner than the basic thickness can increase 

more under a bending load than the fatigue strength under an axial load. The steeper 

thickness exponents of bending loaded T joints were obtained by Yagi (1991) with fa-

tigue tests on geometrically similar component models under both axial and bending 

loads. The relations in terms of nominal and hot-spot stress were again similar, due to 

the small stress concentrations. 

From Fig. A-8 and previous results, the thickness effects in terms of hot-spot stress, 

with an exponent of 0.25, could be extended to 6 mm for cruciform joints. Thickness 

effects of cruciform and T joints, in terms of hot-spot stress, were similar to those of 

nominal stress. Thickness effects down to 6 mm are shown in Fig. A-8 and in previous 

studies. Though the thickness exponents of bending loaded T joints were steeper than 

0.25, the lower exponent applied to plates thinner than the basic thickness can provide 

safe estimations. The corrected thickness indicated in Equation 2-2 can be applied to 
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determine the thickness factor, but simply using the main plate thickness, which is equal 

to or larger than the corrected thickness would give safe fatigue estimations. 

Fig. A-9a and b show relations between thickness and fatigue strength of out-of-plane 

gusset joints in terms of nominal and hot-spot stress, respectively, and Table A-6 sum-

marizes the fatigue strengths. Fig. A-9 also shows the mean lines obtained by linear 

regressions. 

The thickness effects on axially loaded out-of-plane gusset joints existed down to 

8-mm thickness, as is similar to the effects on cruciform joints, and its exponents were 

0.29 and 0.28 in terms of nominal and hot-spot stress. The existence of thickness effects 

in terms of nominal stress has already been indicated in the literature (Sakano 1994, 

2004; Hobbacher 2007), and these effects can be applied to out-of-plane gusset joints 

with relatively thicker plates. Fig. A-9 shows that the thickness effects extended to rela-

tively thin plates in terms of hot-spot stress. Though SCFs of axially loaded out-of-plane 

gusset joints had ranges from 1.20 to 1.43, the mean thickness exponents in terms of 

nominal and hot-spot stress were similar. This result might mean that structural stress 

concentrations calculated by using reference points of 0.4t and 1.0t do not have signifi-

cant effects on the thickness effects of axially loaded out-of-plane gusset joints.  

The thickness effects on bending loaded out-of-plane gusset joints also existed down 

to 12-mm thickness and its exponents were 0.27 and 0.35 in terms of nominal and 

hot-spot stress, respectively. The steeper thickness exponents in terms of hot-spot stress 

could be obtained due to the relatively smaller SCFs of fatigue data at 75-mm thickness, 

which were 1.14 and 1.15, whereas the other bending loaded out-of-plane gusset joints 

had SCFs of 1.25 to 1.60. The two fatigue data at 75-mm thickness could have affected 

the mean thickness exponent, since only those two data existed for bending loaded 

out-of-plane gusset joints with a thickness >25 mm. 

From Fig. A-9, the thickness effects in terms of hot-spot stress with an exponent of 

0.25 could be extended to 8 mm for cruciform joints. Fig. A-9 shows thickness expo-

nents steeper than 0.25. This result shows exponent 0.25 applied to plates thinner than 

the basic thickness can provide safe fatigue estimations. Though fatigue data was lim-

ited in numbers and thickness ranges down to 8 and 12 mm for the axially and the 

bending loaded joints, respectively, the thickness effect could be extended to 6-mm 

thickness, which is the minimum thickness commonly applied to orthotropic steel 

decks. 

 

 

 

A.4. Bending effect investigation 

Fig. A-10a and b show fatigue data of axially and bending loaded cruciform joints 

with thicknesses of 6-25 mm, in the S-N diagrams with the vertical axis of nominal 

stress and hot-spot stress modified by the thickness effect factor (t/25)
0.25

, respectively. 

The figures do not include fatigue data of plates thicker than 25 mm, which are rarely 

used for orthotropic steel decks and can cause non-conservative fatigue estimations by 

thickness exponents of 0.25, according to Fig. A-8. Fig. A-10 also shows 95% survival 

curves connected to constant amplitude fatigue limits, and the axial-bending ratios are 

shown in Equation 2-3 

Comparing the 95% survival curves, the reduction factor of 0.8 for bending stresses 
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could be applicable to cruciform joints evaluated by the hot-spot stress approach. The 

axial-bending ratios in terms of nominal stress, which were 0.89 and 0.88 at 2.0 × 10
6
 

cycles and constant amplitude fatigue limits, were smaller value than 0.8 as suggested 

by JSSC (2012), or 0.6 as suggested by Lotsberg and Sigurdsson (2006). On the other 

hand, the axial-bending ratios in terms of hot-spot stress were 0.74 and 0.76 at 2.0 × 10
6
 

cycles and constant amplitude fatigue limits, respectively. Those ratios were closer val-

ues to those provided by the literature and indicate that the reduction factor of 0.8 for 

bending stress suggested by JSSC (2012) can give safe fatigue estimations to the 

hot-spot stress approach. The reason why the axial-bending ratios in terms of hot-spot 

stress decrease might be that the fatigue life distribution of bending loaded cruciform 

joints in the relatively short fatigue life region were narrowed by taking account of 

structural stress concentrations. 

  Fig. A-11a and b show S-N diagrams of the fatigue data of axially and bending load-

ed out-of-plane gusset joints with thicknesses of 8-25 mm. Explanations for Fig. A-11 

are the same as those for Fig. A-10. 

  Comparing the 95% survival curves, the reduction factor of 0.8 for bending stresses 

could be applicable to out-of-plane gusset joints evaluated by the hot-spot stress ap-

proach, with an appropriate constant amplitude fatigue limit. The axial-bending ratios at 

2.0 × 10
6
 cycles in terms of nominal and hot-spot stress were 0.79 and 0.68, respectively. 

This result indicates that the reduction factor of 0.8, suggested by JSSC (2012), can give 

safe fatigue estimations to both the nominal and the hot-spot stress approaches. The axi-

al-bending ratios at constant amplitude fatigue limits in terms of nominal and hot-spot 

stress were 1.07 and 0.86, both of which are larger than 0.8. However, 0.8 times the 

constant amplitude fatigue limits, 0.8 × 56 = 45 and 0.8 × 84 = 67 N/mm
2
, were larger 

than the corresponding design values, 32 and 62 N/mm
2
, provided by JSSC (2012).  

 

 

 

A.5. Fatigue design curve selection 

  Fig. A-12 to Fig. A-15 show fatigue strengths of literature data and fatigue class 

JSSC-E provided by the JSSC recommendation, plotted in S-N diagrams with vertical 

axes of hot-spot stresses modified by the equations below. 
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where h, m and h, b are membrane and bending components of hot-spot stresses, re-

spectively, and h, obv and h, rev are hot-spot stresses calculated based on obverse and 

reverse surface stresses. The hot-spot stress and their bending components were com-

puted by finite element analyses and are summarized in Table A-5 to Table A-7. As the 

results of the previous section, the thickness factor and the bending reduction factor 

were determined to be those provided by the JSSC recommendation. The thickness fac-

tor was applied to any type of joint with all thickness ranges, though JSSC 

recommendations provide the thickness factor for only cruciform and butt welded joints 
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with plates thicker than 25 mm. Fig. A-12 to Fig. A-15 only show fatigue strengths of 

joints with plates thinner than 25 mm, since the thickness exponents of 0.25 can be 

non-conservative for plates thicker than 25 mm, which is a thickness rarely applied to 

orthotropic steel decks. 

  All fatigue data, except some plots of in-plane gusset joints at fatigue lives >9.0 × 10
6
, 

satisfied fatigue class JSSC-E. Fatigue data sets of component joints had 95% survival 

curves above or across JSSC-E (Fig. A-12 to Fig. A-15). In addition, all fatigue data of 

structural models were plotted above JSSC-E (Fig. A-15). However, 95% survival 

curves of both axially and bending loaded cruciform joints were below JSSC-E in rela-

tively short fatigue life regions of approximately ≦1.0 × 10
6
 cycles, which corresponds 

to the factored hot-spot stress ranges of ≧100 N/mm
2
 (Fig. A-12). Furthermore, some 

in-plane gusset joints were plotted below the constant amplitude fatigue limit of JSSC-E. 

Therefore, the fatigue evaluation using the hot-spot stress modified by Equation 2-4a 

and the fatigue design curve of JSSC-E could be applicable for type A and C hot spots, 

but can result in non-conservative fatigue evaluations in the case that the hot-spot stress 

ranges are equal or higher than 100 N/mm
2
. In addition, the fatigue evaluation could be 

applicable to type B hot spots, whereas the constant amplitude fatigue limit of JSSC-E 

would not applicable to the evaluations of in-plane gusset joints.  
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Table A-1 Fatigue data of cruciform and T joints 

Reference Material Load Series t1 [mm] t2 [mm] a [mm] N 

Kamakura (1979) SM50B Axial     1  9    9  6  5 

   
 2    9    9  6  5 

   
 3    9    9  6  7 

   
 4 20    9  9  7  

   
 5 20    9  9  6 

   
 6 20    9  9  5 

   
 7 20   20  9  7 

Maddox (1987) Grade50   Axial     1 13   10  8  4 

   
 2 50   50 16  6 

   
 3 100   50 16  4 

Yagi (1991) EH36   Axial     1 10    5  4  5 

   
 2 10   10  9  7 

   
 3 10   22 16  7 

   
 4 22   10  9  6 

   
 5 22   22 16  8 

   
 6 22   40 32  8 

   
 7 40   10  9  7 

   
 8-9 40   22 16  6+6 

   
10 40   40 32  8 

   
11 80   10  9  7 

   
12 80   22 16  5 

   
13 80   40 32  7 

Miki (1987) SM58   Bending*    1  9   16  6  8 

   
 2 15   16  6  8 

   
 3 24   16  6  6 

   
 4 34   16  6  6 

   
 5 50   16  6  7 

   
 6 50   50 19  7 

Vosikovsky (1989) 350 Grade   Bending*    1 16   16   10**  7 

   
 2 26   26   16**  8 

   
 3  52   52   28**  4 

   
 4 78   78    39.5**  5 

   
 5 103  103    54.5**  7 

Yagi (1993) EH36   Bending*    1 22   10  9  6 

   
 2 22   22 16  5 

   
 3 40   22 16  6 

   
 4 80   22 16  7 

   
 5 80   40 32  7 

t1, t2: main and attached plate thicknesses, a: weld leg length, N: number of data except ≦10
5
 and run-out 

* Miki (1987): 4-point bending, Vosikovsky (1989) and Yagi (1993): 3-point bending, **Average value 
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Table A-2 Fatigue data of out-of-plane gusset joints 

Reference Material Load Series t1 [mm] t2 [mm] a [mm] N 

Shimokawa (1985) HT80  Axial 1 30 36 9    3 

Anami (2000) SM570 Axial 1 16 12  9
a
   26 

Huo (2005) 16Mn Axial 1  8  8  5
a
   9 

Park (2008) BHS500 Axial 1 20 20  11.15/8.01
 b 

  3 

Wang (2009) SS800 Axial 1  8  8  5
a
   16 

Maddox (2011) Grade 355J2+N Axial 1 30 30 8    3 

Araki (2012) SM490YA Axial 1 12 12 9    9 

Mori (2012) SBHS500 Axial 1 12 12  10.8/8.2
 b 

  14 

Kim (2013) SM400 or 490 Axial 1 10 10 6    13 

Sakano (1994) SM570Q Bending 1 25 25 8    3 

   
2 75 75 13    4 

Sakano (2004) SM570Q Bending 1 75 25 13    3 

Araki (2012) SM490YA Bending 1 12 12 9    13 

Kim (2013) SM400 or 490 Bending 1 14 14 6    3 

Sakino (2015) HT780 Bending 1 15 6 8    14 

t1, t2: main and attached plate thicknesses, a: weld leg length, N: number of data except ≦10
5
 and run-out 

a
 Not found in the literature and set to t2/√2, 

b
 Main plate side / Attached plate side 

 

Table A-3 Fatigue data of other component joints 

Reference Material    Type Stress t1 [mm] N Crack 

Yamada (1984) SM50A B Membrane 10 19  20 mm (2.0)
 a
 

Miki (1993) No info. available B Membrane    9 7 40 mm (4.4)
 a
  

Kondo (2002) SM520B B Membrane 10 18 20 mm (2.0)
 a
  

 SM490A B Membrane 10 8 20 mm (2.0)
 a
  

Fricke (2006) No info. available B Membrane 12 3 No info. available 
a
 twice of plate edge crack length at fatigue failure (c / t1) 

 

Table A-4 Fatigue data of structural models  

Reference Material    Type Stress t1 [mm] N Crack 

Yagi (1991) TMCP (YP353) A Membrane 22 12 100 mm (4.5)
 a

  

Kim (2013) SM400A A Membrane    9 8 30 mm (3.3)
 a

  

Yamaoka (2010) SM400A B Membrane 9 2 40 mm (2.5)
 b

  

Schumacher (2006) S 355 J2 H C Bending 20 8 Through-thickness 

    12.5 4 Through-thickness 

Cheng (2015) Q420 C Bending 12 2 Through-thickness 

    10 2 Through-thickness 

       8 2 Through-thickness 
a
 surface crack length c at fatigue failure (c / t1) 

b
 twice of plate edge crack length at fatigue failure (c / t1) 
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Table A-5 Fatigue strength of non-load-carrying cruciform joints 

Reference Series 
Thickness [mm] 

SCF m 
Fatigue strength [N/mm

2
] 

t1 L/2 Nominal Hotspot stress 

Axial loading test        

Kamakura (1979) 1 9 10.5 1.04 3.0 124 129 

 
2 9 10.5 1.02 3.0 130 132 

 
3 9 10.5 1.00 3.0 129 129 

 
4 20 13.5 1.04 3.0 100 104 

 
5 20 13.5 1.02 3.0 106 108 

 
6 20 13.5 1.01 3.0  96  97 

 
7 20 19 1.04 3.0  91  95 

Maddox (1987) 1 13 13 1.01 3.0  99 100 

 
2 50 41 1.02 3.0  76  77 

 
3 100 41 1.02 3.0  71  73 

Yagi (1991) 1 10 6.5 0.99 3.0 137 135 

 
2 10 14 0.98 3.0 108 106 

 
3 10 27 1.00 3.0 120 119 

 
4 22 14 1.03 3.0 121 125 

 
5 22 27 1.03 3.0  88  90 

 
6 22 52 1.02 3.0  91  94 

 
7 40 14 1.04 3.0 109 113 

 
8 40 27 1.05 3.0  97 101 

 
9 40 27 1.05 3.0  91  96 

 
10 40 52 1.05 3.0  94  98 

 
11 80 14 1.03 3.0  87  89 

 
12 80 27 1.04 3.0  99 103 

 
13 80 52 1.05 3.0  87  91 

Bending test        

Miki (1987) 1 9 14 0.94 3.0 213 199 

 
2 15 14 0.94 3.0 179 167 

 
3 24 14 0.94 3.0 130 122 

 
4 34 14 1.03 3.0 150 155 

 
5 50 14 1.03 3.0 139 143 

 
6 50 44 1.03 3.0 116 120 

Vosikovsky (1989) 1 16 18 0.96 3.0 143 137 

 
2 26 29 0.97 3.0 119 115 

 
3 52 54 0.93 3.0  92  85 

 
4 78 78.5 0.93 3.0  88  82 

 
5 103 106 0.93 3.0  81  75 

Yagi (1991) 1 22 14 0.94 3.0 127 120 

 
2 22 27 0.93 3.0 115 107 

 
3 40 27 0.95 3.0  95  90 

 
4 80 27 0.98 3.0 100  99 

 
5 80 52 0.96 3.0  83  79 

t1, t2: thicknesses of main and attached plates, L: t2+2a as shown in, a: weld leg length 

f, f,h: fatigue strength corresponding to nominal and hot spot stresses 
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Table A-6 Fatigue strength of out-of-plane gusset joints 

Reference Series t1 [mm] SCF m 
Fatigue strength [N/mm

2
] 

f f, h 

Axial loading test       

Shimokawa (1985) 1 30 1.43 3.0  72 103 

Anami (2000) 1 16 1.22 3.0  98 120 

Huo (2005) 1 8 1.23 3.0 113 138 

Park (2008) 1 20 1.22 3.0  88 108 

Wang (2009) 1 8 1.23 3.2 104 127 

Maddox (2011) 1 30 1.20 3.0  68  82 

Araki (2012) 1 12 1.34 3.0  84 113 

Mori (2012) 1 12 1.32 3.8  91 120 

Kim (2013) 1 10 1.37 3.6 99 136 

Bending test       

Sakano (1994) 1 25 1.60 3.0 112 180 

 
2 75 1.15 3.0  80  91 

Sakano (2004) 1 75 1.14 3.0  82  94 

Araki (2012) 1 12 1.25 3.1 136 169 

Kim (2013) 1 14 1.37 3.0 129 177 

Sakino (2015) 1 15 1.30 2.8 120 156 

t1: thicknesses of main plates, f, f,h: fatigue strength corresponding to nominal and hot spot stresses 

 

Table A-7 Fatigue strength of component joints with cracks at type B hot spots 

Reference Series t1 [mm] SCF m 
Fatigue strength [N/mm

2
] 

f f, h 

In-plane gusset       

Yamada (1984)  G5 10 1.64 3.0 105 173 

  G1 10 1.92 3.0  99 190 

 
 G2 10 2.27 3.0  97 220 

Kondo (2002)  GS 10 1.80 3.0 124 223 

 
 GL 10 1.88 3.0 113 213 

 
GLL  9 2.26 3.0  95 215 

Plate edge to plate surface 

Miki (1993) Gap 25mm  9 8.7 3.0  25 215 

 
Gap 30mm  9 9.7 3.0  23 224 

 
Gap 35mm  9 9.3 3.0  29 267 

 
Gap 40mm  9 7.7 3.0  24 188 

Fricke (2006)        A 12 1.5 3.0 125 188 

t1: thicknesses of main plates, f, f,h: fatigue strength corresponding to nominal and hot spot stresses 
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Fig. A-1 Basic component specimens 

 

 

 

 
Fig. A-2 Loadings on cruciform, T and out-of-plane gusset joints 
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Fig. A-3 Component models for fatigue cracks from type B hot spots 
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Fig. A-4 Structural model (Yagi, 1991) 

 

 

 
Fig. A-5 Structural model (Kim, 2013) 
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Fig. A-6 Structural model (Yamaoka, 2010) 

 

 

 
Fig. A-7 Structural model (Cheng, 2015) 
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Fig. A-8 Relationships between thicknesses and fatigue strength of cruciform and T 

joints 
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Fig. A-9 Relationships between thicknesses and fatigue strength of out-of-plane gusset 

joint 
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Fig. A-10 Comparison between axially- and bending-loaded cruciform joints (T joints) 

 

 

  

105 106 107

100

Nf [cycles]

(t
/2

5
)0

.2
5



[N
/m

m
2
]

Axial-bending ratio

= 0.89 0.88

105 106 107

100

Nf [cycles]

(t
/2

5
)0

.2
5



h
[N

/m
m

2
]

0.76

Axial-bending ratio

= 0.74

(a) Nominal stress approach

(b) Hot spot stress approach

Axial

Axial, 95% survival

Bending

Bending , 95% survival

Axial

Axial, 95% survival

Bending

Bending , 95% survival



 

153 

 

 

 
 

Fig. A-11 Comparison between axially- and bending-loaded out-of-plane gusset joints 
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Fig. A-12 Fatigue strength in terms of factored hot spot stress – cruciform and T joints 

 

 

 
Fig. A-13 Fatigue strength in terms of factored hot spot stress – out-of-plane gusset 

joints 
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Fig. A-14 Fatigue strength in terms of factored hot spot stress – component joints with 

cracks at type B hot spots 

 

 

 
Fig. A-15 Fatigue strength in terms of factored hot spot stress – Structural models 
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Appendix-B Deck panel model experiment 

records 

B.1. Order of loading in deck panel model experiments 

  Table B-1–B-4 shows all loading records of deck panel model experiments. Loading 

positions are shown in Fig. B-1–B-4. Though it is not displayed in the tables, all con-

stant amplitude fatigue tests and running wheel tests include static loading before and 

after fatigue loading with the same loading position and the same maximum loads as the 

fatigue tests.  

  Since order of loading can affect residual stress conditions and fatigue test results, all 

loading histories should be considered. Welding residual stresses around welded joints 

can redistribute when local yielding of areas around the welded joints occur by loading. 

Therefore relations between load and measured strain can change depending on previ-

ous loading histories. 

 

 

B.1. Fatigue crack locations 

   Fig. B-5–B-8 shows all fatigue crack locations including the cracks which were not 

used in Chapter 4, such as the cracks of rib-to-deck joints underneath the loading posi-

tions. The loading positions and cycles, which caused the cracks, were summarized in 

Table B-1–B-4. “Crack detection” in the tables means visual detection of the cracks. 

Cracks initiated at rib-to-deck joints of model U were root cracks and could not be de-

tected visually. Cracks initiated at rib-to-deck joints of model V were detected visually. 

Cracks at VW-35 and VW-45 were initiated from weld root but propagated to deck plate 

surface. Crack at VW-46 were detected on weld bead surfaces as shown in Fig. B-9. 
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Table B-1 Test conditions and results of model U 

Load 

case 

Test 

type 

Load [kN] Freq. 

 

Cycle 

[×10
6
] 

Status
a
 

Min. Max. Range 

UWa Static 0 50 50 - -  

UWb Static 0 100 100 - -  

UNa Static 0 100 100 - -  

UNc Static 0 100 100 - -  

USc Static 0 100 100 - -  

USd Static 0 100 100 - -  

USb Static 0 100 100 - -  

USa Static 0 100 100 - -  

UNb Static 0 100 100 - -  

UNd Static 0 100 100 - -  

USe Static 0 100 100 - -  

USa Cyclic 5 105 100 2.6 Hz 0.70 Failure at US-22  

      0.70 Crack detection at US-32 

      1.48 Failure at US-32 

      3.00 Fatigue test stop 

UWa Cyclic 5 80 75 2.5 Hz 0.20 15 % strain drop at UW-35 

      0.35 15 % strain drop at UW-45 

      3.00 Fatigue test stop 

UNa Cyclic 5 105 100 2.7 Hz 4.62 Fatigue test stop 
a
 crack detection means visual detection, fatigue failure definition are explained in section 4.4.1, 

 

 

 

Table B-2 Test conditions and results of model V 

Load 

case 

Test 

type 

Load [kN] Freq. 

 

Cycle 

[×10
6
] 

Status
a
 

Min. Max. Range 

VNb Static 0 100 100 - -  

VNd Static 0 100 100 - -  

VNc Static 0 100 100 - -  

VNa Static 0 120 120 - -  

VWa Static 0 75 75 - -  

VWa Cyclic 5 80 75 5.1 Hz 2.25 15 % strain drop at VW-35' 

      5.50 Fatigue test stop 

VNa Cyclic 5 125 120 3.5 Hz 5.00 Fatigue test stop 

VNa Cyclic 5 250 245 2.8 Hz 3.00 Failure at VN-32, 32'
c
 

      3.00 Crack detection at VW-46 

VNra Running 0 198 198 5.5 rpm
b
 0.30 Crack detection at VW-35, 45

d
 

      1.01 Fatigue test stop 

VNrb Running 0 198 198 5.4 rpm
b
 0.34 Fatigue test stop 

a
 crack detection means visual detection, fatigue failure definition are explained in section 4.4.1, 

b
 rpm means revolution per minute, or round trip per minute, 

c
 though the cracks were detected after 0.05 million cycles of the wheel running fatigue test, the cracks 

were considered to be caused by load VNa, 
d
 fatigue cracks initiated from weld root of rib-to-deck joints were penetrated the deck plate and detected 

as surface cracks on the deck plate 
 

  



 

158 

 

Table B-3 Test conditions and results of model P 

Load 

case 

Test 

type 

Load [kN] Freq. 

 

Cycle 

[×10
6
] 

Status
a
 

Min. Max. Range 

PSa Static 0 100 100 - - In-elastic strain at PS-43, 43', 53, 53' 

PSc Static 0 100 100 - - In-elastic strain at PS-33, 34' 

PSd Static 0 100 100 - -  

PSe Static 0 100 100 - -  

PSf Static 0 100 100 - -  

PSb Static 0 100 100 - -  

PNb Static 0 100 100 - -  

PNc Static 0 100 100 - -  

PNd Static 0 100 100 - -  

PNe Static 0 100 100 - -  

PSf Static 0 100 100 - -  

PSa Cyclic 5 200 195 3.6 Hz 0.35 Crack detection at PW-25 

PNb Cyclic 5 200 195 3.0 Hz 0.25 Crack detection at PW-36 and PW-36* 

      0.25 Repairing of PW-36 and PW-36* 

      5.35 Fatigue test stop 

PSa Cyclic 10 300 290 3.0 Hz 1.25 Failure at PS-14 

      1.48 Crack detection at PS-23 

      2.33 Failure at PS-23 

      3.48 Failure at PS-24 

      5.30 Fatigue test stop 

PNa Static 0 210 205 3.0 Hz  In-elastic strain at PN-42, 42' 

PNa Cyclic 5 210 205 3.0 Hz 0.35 Crack detection at PW-46 and PW-46* 

      0.35 Repairing of PW-46 and PW-46* 

      5.40 Fatigue test stop 

PNa Cyclic 5 415 410 1.6 Hz 1.04 Fatigue test stop 
a
 crack detection means visual detection, fatigue failure definition are explained in section 4.4.1, 

 

 

 

Table B-4 Test conditions and results of model PL 

Load 

case 

Test 

type 

Load [kN] Freq. 

 

Cycle 

[×10
6
] 

Status
a
 

Min. Max. Range 

PLr Running 0 198 198 3.6 rpm
b
 2.00 Fatigue test stop 

PLa Static 0 856 856   In-elastic strain at PL-32, 32' 

PLa Cyclic 10 856 846 1.0 Hz 0.41 Failure at PL-31 

      0.49 Fatigue test stop 

PLb Static 0 633 633   In-elastic strain at PL-42, 42' 

PLb Cyclic 10 633 623 1.2 Hz 0.37 Stop hole drilling for crack at PL-31 

      0.67 Crack detection at PL-41 and PL-41' 

      0.86 Failure at PL-41 

      0.86 Fatigue test stop 
a
 crack detection means visual detection, fatigue failure definition are explained in section 4.4.1, 

b
 rpm means revolution per minute, or round trip per minute, 
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Fig. B-1 Shapes and loading positions of model U 
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Fig. B-2 Shapes and loading positions of model V 
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Fig. B-3 Shapes and loading positions of model P 
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Fig. B-4 Shapes and loading positions of model PL 
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Fig. B-5 Location of racks in model U 

 

 

 

 
Fig. B-6 Location of racks in model V 
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Fig. B-7 Location of racks in model P 

 

 

 

 
Fig. B-8 Location of racks in model PL 

 

 
Fig. B-9 Crack at rib-to-deck joints, VW-46, of model V 
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