CV ケーブルの水トリー劣化検出を目的とした 絶縁劣化診断技術の向上に関する研究

2021 年 蒲原 弘昭

目

次

第1章	緒論		1
1.1	研究の背景		1
1.1.1	電力ケーブルの歴史と絶縁材料		2
1.1.2	2 CV ケーブルの構造および材料と仕様	変遷	4
1.2	研究分野の技術動向		9
1.2.1	CV ケーブルの劣化要因と劣化形態		9
1.2.2	2 CV ケーブルの主な劣化とその対策		12
1.2.3	3 CV ケーブルの診断技術の動向		21
1.3	研究目的と本論文の概要		23
第1章	重参考文献		26
第2章	CV ケーブルの水トリー劣化とその診断技	5術	28
2.1	緒言		28
2.2	水トリーの発生・伸展と特性		28
2.2.1	水トリーの構造		28
2.2.2	2 水トリーの発生要因		30
2.2.3	3 水トリーの発生・伸展に及ぼす影響		32
2.2.4	4 水トリーの電気的特性		37
2.3	水トリー劣化したケーブルについて		41
2.3.1	水トリー劣化したケーブルによるトラ	ブル	41
2.3.2	2 ケーブルの電気的特性に与える他の影	郷 音	41
2.4	水トリー劣化の診断技術		44
2.4.1	1988 年以前に実用化された診断技術		47
2.4.2	2 1989 年以降に実用化された診断技術		59
2.5	結言		75
第2章	重参考文献		77
第3章	水トリー劣化検出技術の向上に関する研究	宏	80
3.1	緒言		80
3.2	低周波重畳法の開発		80

(i)

3.2.1

低周波重畳法開発の背景

3.2.2	低周波重畳法の測定原理	
3.2.3	低周波重畳法の当初の測定装置 CMLF	の概要 ······ 81
3.2.4	CMLF の測定方法	
3.2.5	低周波重畳法の判定基準	
3.2.6	低周波重畳法の水トリー劣化検出性能	
3.2.7	CMLF の実用化によって明確になった	課題86
3.3	交流絶縁抵抗測定法の開発	
3.3.1	測定理論	
3.3.2	測定方法	
3.3.3	測定装置 AIR の概要	
3.3.4	測定範囲と測定誤差の数値計算	
3.3.5	AIR の開発によって明らかになった CI	MLF のさら なる問題点と対策 …103
3.4	結言	
第3章参考文献		106

第4章	交流絶縁抵抗測定装置 AIR のフィールドi	適用107
4.1	緒言	
4.2	測定装置(CMLF と AIR)の比較検証試験	礆 107
4.2.1	測定装置の違い	
4.2.2	対象ケーブル	
4.2.3	比較検証試験状況	
4.2.4	比較検証試験結果	
4.2.5	比較検証試験のまとめ	117
4.3	フィールドデータの収集と分析	117
4.3.1	オンライン測定	117
4.3.2	オフライン測定	
4.3.3	フィールドデータに基づく劣化検出性	能に関する検討125
4.4	結言	
第4章	参考文献	

性能128	水トリーに流れる電流の特性と水トリー劣化検出性	第5章
	緒言	5.1
	1個の水トリーの特性	5.2
†134	水トリーの電気的特性面から見た劣化信号の検討	5.3

5.	.3.1	各種の電気伝導機構に基づく伝導性電源	流の電圧依存性134
5.	.3.2	水トリーに流れる伝導性電流の電圧の炎	次数に対する依存性135
5.	.3.3	水トリーの電気伝導特性から推定される	る各種の劣化信号の特徴137
5.4		水トリー劣化したケーブルと1個の水トリ	ノーの特性の詳細調査 142
5.	.4.1	直流電圧印加時の直流漏れ電流特性	
5.	.4.2	低周波電圧印加時の低周波損失電流特性	±145
5.	.4.3	商用周波電圧重畳時の低周波損失電流物	寺性 ・・・・・147
5.	.4.4	直流電圧重畳時の低周波損失電流特性	
5.	.4.5	低周波損失電流の周波数依存性	154
5.	.4.6	劣化検出性能の評価	156
5.5		交流絶縁抵抗測定法を用いた診断法と他の)診断法との比較157
5.	.5.1	直流漏れ電流法との比較	
5.	.5.2	直流成分法との比較	
5.	.5.3	交流重畳法との比較	
5.6		交流絶縁抵抗測定法による水トリー劣化核	後出性能の評価171
5.7		22kV 以上の CV ケーブルにおける水トリ・	ー劣化診断への適用検討172
5.	.7.1	66kV CV ケーブルにおける水トリー劣	と診断への適用検討172
5.	.7.2	22kV CV ケーブルにおける水トリー劣	と診断への適用検討174
5.8		結言	
第5	5 章参	参考文献	176
第6章	¥	総括	
制动			

183

第1章 緒論

1.1 研究の背景

1878年(明治11年)3月25日,東京虎の門の工部大学校(現在の東京大学工学部)の ホールに,蓄電池を電源とした電灯「アーク灯」が設置され国内で初めて点灯した。これ に由来し3月25日は,「電気記念日」となっている⁽¹⁾。この後,1883年(明治16年)に発 電機を電源とした電力供給がはじまり,1887年(明治20年)には,東京日本橋に国内初 の石炭火力発電所が建設され,白熱電灯1,600個が点灯されたことが知られている⁽²⁾。

1891年(明治24年)漏電によると思われる火災で国会議事堂(帝国議事堂)が焼失したことによって、電気は危ないという世論が形成されてしまった。この頃から、漏電を防止するための電気絶縁性能の確保、予防保全の考えが徐々に芽生えはじめ⁽³⁾現在に至っている。しかし、当時は電気の利便性の前に批判の声はいつの間にか消えていった。

1889年(明治22年)大阪ではアメリカから輸入した 60Hz 発電機を用いて交流配電が導入された⁽⁴⁾。直流配電であった東京でも1893年(明治26年)ドイツ製の 50Hz 発電機を輸入し,1895年(明治28年)から交流配電が開始された⁽³⁾。この異なる2つの周波数の発電機導入が現在の国内の周波数利用に至っている。

この後,大正,昭和から平成へと時代が変わるにつれ,電気利用の拡大に伴う送電効率 の向上に向けた改善や技術開発が進み,発電した電圧を一旦昇圧して,高電圧の送電網を 介して広範囲に供給し,需要地域で実際に使用される電圧まで降圧して配電する電力シス テムが出来上がっていった。

電力システムを構築する電気設備・機器には,発電機,変圧器,遮断器,電線・ケーブ ルなどがあり,負荷設備を含む電気設備・機器間の接続には電力用の電線・ケーブルが使 用されている。特に,高圧以上の電力ケーブルの場合,遮へい層を有しているため,絶縁 破壊による地絡事故(漏電)や短絡事故につながることと,気中,地中,埋設など様々な 布設形態があることから,使用状況や使用環境に応じた管理が必要となる。その中で,近 年電力ケーブルの大半を占める CV ケーブルにおいては,特有の劣化形態である水トリー による絶縁破壊事故の未然防止や水トリー対策が検討されてきている。

本論文では, CV ケーブルの水トリー劣化検出を目的とした絶縁診断技術の向上に関し て取り組んできた内容をまとめたもので,水トリー劣化の特徴と診断技術,測定方法の研 究・開発,フィールドでの絶縁診断,開発した測定方法で確認した水トリー劣化の特性と 劣化検出性能について述べる。

1.1.1 電力ケーブルの歴史と絶縁材料

電力ケーブルの歴史を表 1.1 に示す。

$1900 \sim$	$1910 \sim$	$1920\sim$	$1930 \sim$	$1940 \sim$	$1950\sim$	$1960 \sim$	$1970 \sim$	$1980 \sim$
ベルトノ	ー ケーブル							
			OFケーブル	/				
		天	然ゴムケーフ	ブル				
					ブチル	ゴムケーブル	(BN)	
						<u>EP</u> =12	ッケーブル(P	V [*])
					ビニルケーン	ブル(VV)		
					ホリエナレ	シケーノル	<u>EV/EE)</u> F1ノンケーブコ	L(CV/CE/CN)
					-			P(OVIOE/ON)

表 1.1 電力ケーブルの歴史

※:最近PVケーブルと言えば、太陽光発電システム用ケーブルとして使用される架橋ポリエチレンケーブルを示すこともある。

日本の電力ケーブルは、1903年(明治 36 年)東京電車鉄道により、東京の大崎変電所 から今川橋間に 6.6kV の地下ケーブルとして使用されたのが最初と言われている。この当 時は、高粘度の絶縁油を含浸した絶縁紙上にジュート(麻の一種で黄麻[こうま]ともい う)を巻き付けたベルトケーブル(図 1.1)が使用された⁽⁵⁾。その後、1925~1964年(昭和 初期から昭和 30 年代)までは同様に高粘度絶縁油を含浸した紙による絶縁で、各心に遮へ いテープを施した H ケーブル、各心に鉛遮へいを施した SL ケーブルが使用され、22kV 系 統では SL ケーブルの採用が一般的であった。しかし、これらのケーブルでは 33kV が限界 であり、絶縁層中に絶縁油を充填し温度変化に伴う油量変化を常に補償する構造を持つ OF ケーブルが、1930年(昭和 5 年)に導入された。以降、66kV 以上の電力ケーブルとして 使用されている。OF ケーブルの構造例を図 1.2 に示す⁽⁶⁾。

図 1.1 3 心ベルトケーブルの構造例(5)

図 1.2 3 心アルミ被 OF ケーブルの構造例(6)

初めて導入された OF ケーブルは布設後 55 年経過した 1985 年(昭和 60 年) にケーブル としての電気的特性と絶縁紙の特性調査が行われた結果,若干の劣化がみられたものの良 好な特性を保持しており,高い信頼性と長期性能を有していることが確認されている⁽⁷⁾。 現在は,新しい線路への適用はほとんどなく,施工・保守管理面で優れた CV ケーブルへ の更新が徐々に進んでいる。

一方,33kV 以下においては,1927 年(昭和2年)頃から,絶縁およびシース材料に天 然ゴムを適用したキャプタイヤケーブルが製造されるようになり,その後,合成ゴムやプ ラスチック材料の開発が進み,ブチルゴム(BR),クロロプレンゴム[ネオプレンゴム](CR), ポリ塩化ビニル (PVC),ポリエチレン (PE)が絶縁材料やシース材料として適用されるよ うになった。ポリ塩化ビニルやポリエチレンは,低圧用の絶縁材料またはケーブル全般の シース材料として,クロロプレンゴムはシース材料として現在も使用されている。

合成ゴムを適用したケーブルとしては、1953 年(昭和 28 年)より BN ケーブル(ブチ ルゴム絶縁クロロプレンゴムシースケーブル)が導入され、その後、1965~1970 年(昭和 40~45 年)にかけて、3.3~33kV 用の電力ケーブルとして広く使用された。しかし、1959 年(昭和 34 年)に3.3kV 用として導入開始された CV ケーブル(架橋ポリエチレン絶縁ビ ニルシースケーブル)が電気的性能、耐熱性に勝っていたために衰退していくこととなっ た⁽⁸⁾。以来、図 1.3 に示すような CV ケーブルへの更新が進み BN ケーブルは少なくなって いる⁽⁹⁾⁽¹⁰⁾。

図 1.3 3 心一括形 CV ケーブルの構造例

その後,新しい絶縁材料として注目されていたエチレンプロピレンゴム[EP ゴム](EPR) は,耐熱性,耐トラッキング性,耐部分放電特性に優れていることから,電力ケーブルの 絶縁材料として検討が進められた。1964年(昭和 39 年)頃,EP ゴムを絶縁体に適用した PV ケーブル(EP ゴム絶縁ビニルシースケーブル)が実用化され注目を集めたが,耐熱性, 誘電損失,コストなどの点で CV ケーブルに及ばなかったため,電力ケーブルへの適用は 一部に留まっている⁽⁸⁾。一方,可とう性が良く,電気的性能が優れていることから,機器 用の絶縁電線やキャプタイヤケーブル,電力ケーブル接続部の絶縁材料として広く使用さ れている。

1.1.2 CV ケーブルの構造および材料と仕様変遷

6.6kV 以上の CV ケーブルの基本構造は、中心から銅(Cu)またはアルミニウム(Al) からなる導体、内部半導電層、架橋ポリエチレン(XLPE)絶縁体、外部半導電層、金属遮 へい層(銅テープまたはワイヤーシールド)、ビニル(PVC)またはポリエチレン(PE)シ ース(防食層)からなっている。シースを施した状態のケーブルには、図 1.4 に示すよう に、単心形、3 心一括形、単心ケーブルを 3 本より合わせたトリプレックス形(CVT)な どがある⁽¹¹⁾。単心形およびトリプレックス形ケーブルは、3 心一括形に比べて電流容量が 大きい、地絡事故から短絡事故に移行しにくい、接続処理が容易であるなどの利点があり、 適用が拡大してきている。

1960年代後半(昭和 42 年以降)から、CV ケーブル特有の水トリー劣化が顕在化し、 1970年(昭和 45 年)以降大きな問題となった。CV ケーブルにおいては、主に水トリー劣 化対策への取り組みにより、技術が変遷してきている。図 1.5 に示すとおり、水トリー発 生の主な要因は、電界の集中と水分の存在であり、これらを解決するために、構造や材料、 製造方法などの改良が行われてきている⁽¹²⁾。その結果、絶縁厚の低減、ケーブルのコンパ クト化につながっている。

図 1.5 水トリーの発生要因と水トリー劣化対策(12)

CV ケーブルは内部および外部半導電層の形成方式による区別があり、半導電性テープ (Tape)は T,押出半導電層(Extrude)はEで表記される。内部・外部半導電層ともテー プ処理のものを T-T タイプ、内部半導電層が押出成形で外部半導電層がテープ処理のもの を E-T タイプ、内部・外部半導電層とも押出成形のものを E-E タイプと呼んでいる。高圧 ケーブルとして使用開始された当初は T-T タイプであったが、図 1.6 に示すように、XLPE 絶縁体と半導電性テープの界面には、半導電性テープの端部に形成される突起や空隙、半 導電性テープの毛羽立ちが生じる。これらの部分はトリプルジャンクションとなり電界が 集中しやすくなるので、水分が供給されると水トリーが発生・伸展する⁽¹³⁾。この CV ケー ブル特有の水トリー劣化が顕在化し、その対策として図 1.7 に示すような E-T タイプ、さ らに水トリーの発生・伸展が抑制される E-E タイプへと変遷してきた。

図 1.6 テープによる半導電層形成方式の弱点と弱点部に発生した内導水トリー(13)

図 1.7 半導電層の形成方式の違いによる区別(13)

			ala.
電圧	項目	年 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 8	度 5 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09
	絶縁厚 (mm)		t=3~4
	架橋方式	湿式(水蒸気)架橋	彭式架橋
	内部半導雷層	テープ巻	押出
6kV			3 Juni 1
	外部半導電層	テーフ巻	押出(フリーストリッピング)
	遮 水 層	-	ラミネート遮水層
	ビニルシース	普通シース	防災シース
	タイプ	T·T E·T	E-E
	絶縁厚	1-7	4-0
	(mm)	t=/	t=6 t=3.5~4
	架橋方式	湿式(水蒸気)架橋	乾式架橋
	外部半導電層	テープ巻	押出(フリーストリッピング)
22kV	遮 水 層	_	ラミネート進水層
	ビニルシース	普通シース	
	السر في مع		防災シース
	タイフ	E-T 7	E-E
	把 傢 厚	t=10 / t=8 /	1-0
	采懎万式	④式(小茶丸)朱備	
33FA	外部半導電層	リーノをまたはか	77山 (フリーストリッピング)
JUN	· 水 届		
		/	ラミネート遮水層
	ビニルシース	普通シース	
			「 防災シース
	タイプ	ET	E-E
	絶 縁 厚 (mm)	66kV t=15 / 66kV t=13 / 66kV t=11 /	66kV t=9~10
		(mm) 77kV t=17	77kV t=17 / 77kV t=15 / 77kV t=13 / -
			77kV t=11~13
	加扬十十		t=10~11
66kV	采懎万式	徑式(小杰丸)朱備	乾八朱樯
		/	
	確へい屋	細テープ0.1mm×2枚	$1.2 \text{mm}\Phi \times 40^{-4}$
77kV	<u>[</u>][]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	調/ / / / / / / / / / / / / / / / / / /	1.211111年へ40年 単元・ワイヤーシールド
114		中心····································	$1.2 \text{mm}\Phi \times 40 \text{ x}$
		/ 0.2000-2012 /	1,211111 # ***70/Ţ*
	遮 水 層	_	ステンレスシース
			ラミネート遮水層
			2 8 1 1 AE(4)/E
	ビニルシース	普通シース	防災シース
	タイプ	/	F-F

・湿式架橋:高温高圧の水蒸気を用いて架橋させる XLPE の製造方式で水蒸気架橋ともいう

・乾式架橋:高温高圧の窒素(N₂)ガスを用いて架橋させる XLPE の製造方式

・T-Tタイプ: 内部半導電層-半導電性テープ 外部半導電層-半導電性テーフ

・E-Tタイプ:内部半導電層 一押出半導電層 外部半導電層 ー半導電性テープ

・ E-E タイプ:内部半導電層 - 押出半導電層 外部半導電層 - 押出半導電層

図 1.8 CV ケーブル仕様変遷の概要⁽¹⁵⁾

また、当初絶縁体の XLPE は、高温高圧の水蒸気を用いた湿式架橋方式で製造されていた。しかし、製造時に水蒸気が XLPE 絶縁体内に浸入し XLPE 絶縁体内の水分量増加やボイドの生成が起こり、水トリー発生などの絶縁性能低下を招くことが明らかになったことから、高温高圧の窒素(N₂)ガスを用いた乾式架橋方式が導入されるようになった⁽¹⁴⁾。現在は、E-T タイプと E-E タイプが製造されているが、耐水トリー劣化特性が優れている乾式架橋方式で製造された E-E タイプが重要度に応じて適用されている。6.6~77kV のクラスにおける CV ケーブルの仕様変遷を図 1.8 に示す⁽¹⁵⁾。

なお,図 1.8 に記載のない 3.3kV の CV ケーブルの中には、半導電層が施されていない もの(図 1.9)や、3 心一括して遮へい銅テープが施される構造のものがあり、6.6kV の 3 心一括形との違いを図 1.10 に示す。CV ケーブル絶縁体の絶縁診断では、導体と遮へい層 (銅テープ)間の絶縁性能を評価するため,導体と遮へい層(銅テープ)間に XLPE 以外の絶縁物(紙テープやジュートなどの介在)が使用されるものは,これらを含んだ絶縁性能を評価していることを理解しておく必要がある。

図 1.9 半導電層が施されていない 3.3kV の CV ケーブル

図 1.10 6.6kV の 3 心一括形 CV ケーブルと 3.3kV の 3 心一括遮へい形 CV ケーブル の構造の違い

1.2 研究分野の技術動向

1.2.1 CV ケーブルの劣化要因と劣化形態

CV ケーブルの劣化要因と劣化形態の分析結果を表 1.2 に示す。CV ケーブルの劣化は, 単独の要因で劣化が生じることは少なく,多くの場合,各種要因が重畳し複合的に作用す ることで劣化が発生し進行する。表 1.3 に示すとおり主な劣化形態としては,水トリー劣 化,遮へい銅テープの破断,熱劣化,および化学的損傷・劣化,生物的損傷・劣化の他, 終端接続部(端末部)のトラッキングの6種類に分類される。

劣化要因		劣化形態		
電気的劣化	使用電圧,長期課電 異常電圧印加 (開閉サージ,雷サージ)	部分放電の発生, 電気トリーの発生・伸展 絶縁性能(耐力)低下		
おんしんれい	負荷変動,日射などによる ヒートサイクル	長さ方向の熱伸縮によるクリープ脆化, 亀裂 直径方向の膨張・収縮による遮へい銅テープ の破断		
***1 2 71L	高温での使用	絶縁体の熱劣化,熱分解 他の劣化要因の促進		
	短絡・地絡	熱劣化,燃焼(炭化)		
	化学薬品,溶剤,油など	変色,硬化,軟化,溶解,分解,亀裂,脆化, 化学トリー発生・伸展		
化学的劣化	紫外線 (日光),オゾン	変色・亀裂		
	水	金属遮へい層の腐食・性能低下 他の劣化要因の促進		
	屈曲, 捻回, 衝擊, 振動,	脆化,亀裂,傷,変形		
機械的劣化	圧縮, 引張, 沈下	他の劣化要因の二次的要因		
生物的劣化	蟻,鼠,こうもり蛾,カビ	傷,溶損,他の劣化要因の二次的要因		
	電界と水	水トリー劣化		
	熱と油・溶剤	化学的劣化、遮へい銅テープの破断		
指へかれ	熱と水	吸水劣化の促進		
複 () 	損傷と油・溶剤	化学的劣化の促進		
	電流と磁性体	誘導による発熱から起こる熱劣化		
	電界とオゾン	部分放電で発生したオゾンによる変色・亀裂		

表 1.2 CV ケーブルおよび接続部の劣化要因と劣化形態(16)

表 1.3 CV	ケーブルお	よび接続部の劣	化形熊とそ	-の特徴(18)
----------	-------	---------	-------	----------

劣化形態	特徴
	・高圧以上のCVケーブルに発生する
	・発生までに時間を要す
	・発生・伸展に部分放電の発生を伴わない
	・3.3~11kVでは水トリーが絶縁体を橋絡しても,運転電圧では直ち
水トリー劣化	に絶縁破壊に至らない
	 ・水の供給、高電界、高周波電圧の印加および高い周囲温度により促
	進される
	 ・内導水トリー、外導水トリー、絶縁体内部の欠陥から伸展するボ
	ウ・タイ状水トリーの3種類に分類される
	・単心ケーブル、トリプレックス形ケーブルは、絶縁破壊に至ること
) 座。い 約二、プ	が多い
	・布設環境による影響が大きい
0.71收函[・破断部の抵抗が数kΩに増加し,地絡保護ができなくなる
	・破断部で放電し,発煙,発火に至る場合がある
おいという	・絶縁体の変色, 亀裂が生じる
熱务112	・シースの変形,硬化,亀裂が生じる
	・化学トリー(成分は主に硫化銅)が発生
化学的損傷・劣化	 ・布設環境により外部から劣化が進展するためシースに顕著に認めら
	れる
生物的損傷・劣化	・動物(シロアリ、ネズミなど)による食害がある
終端接続部の	・終端接続部の汚損または選定ミスによることが多い
トラッキング	・放置すると、焼損事故に至ることがある

CV ケーブルの部位別劣化プロセスと要因および発生事象を図 1.11 に,劣化進展フロー を図 1.12 に示す。寿命を決定する劣化形態としては,水トリー劣化,遮へい銅テープの破 断,終端接続部のトラッキングがあげられる⁽¹⁰⁾⁽¹³⁾⁽¹⁷⁾。ケーブルおよび接続部の劣化には水 が関与する場合が多く,寿命を考える上で水は極めて重要である。水がケーブル内に浸入 する原因としては,シースの損傷やシースのシュリンクバックによる浸水の他,水分のシ ース透過によるものがある⁽¹³⁾⁽¹⁸⁾。

図 1.11 および図 1.12 に記載していないが,接続部に使用される EP ゴムには過酸化物架橋と硫黄加硫の 2 種類があり,硫黄加硫の EP ゴムでは加硫剤の析出や吸水劣化が生じることがある。66~77kV のモールドストレスコーンでは,加硫剤の析出によって部分放電発

生から絶縁破壊に至った事例がある⁽¹³⁾。また、水分の多い環境下で使用された 22kV 以下の接続部の絶縁筒で、吸水劣化により絶縁破壊に至った事例も確認されている。

図 1.11 CV ケーブルの部位別劣化プロセスと要因および発生事象(17)

図 1.12 CV ケーブルおよび接続部の劣化進展フロー(19)

ところで、6.6kVのCVケーブルは、T-Tタイプにはじまり、E-Tタイプ、E-Eタイプと 水トリー劣化対策として変遷してきた。水の影響がある場合の水トリー劣化による更新推 奨時期として、T-T/E-Tタイプでは15年⁽¹⁶⁾とされているのに対し、E-Eタイプでは30年以 上が期待される研究成果が得られている⁽²⁰⁾。E-Eタイプでは、水トリー劣化による絶縁破 壊事故が発生しにくくなっている反面、遮へい銅テープの腐食やヒートサイクル、布設時 または布設後の応力などによって、遮へい銅テープの破断が生じ絶縁破壊に至るケースが 目立つようになってきている。

1.2.2 CV ケーブルの主な劣化とその対策

前項でも述べたとおり、CV ケーブルおよび接続部の劣化には水が関与していることが 多く、水分のシース透過、シース損傷箇所からの浸水、シースのシュリンクバックによっ て接続部のテープ処理部などから浸水することがある。水分のシース透過に対しては布設 環境に対する配慮が不可欠であり、ラック布設への変更や、水に浸かる布設環境を避けら れない場合は、水分透過を抑制するために金属ラミネート遮水層を設けることがある。シ ース損傷に対しては、ケーブル布設時にシースの外傷防止に留意することやシロアリやネ ズミなどによる食害にも注意が必要とされている。また、シースのシュリンクバックに対 しては、接続部近傍のケーブル本体の固定において適切なシュリンクバック対策を講じる 必要がある。

CV ケーブルおよび接続部の劣化として 6 種類の形態があるが,ここでは,ケーブルの 寿命に対する影響が大きく多くの事例が報告されている水トリー劣化,遮へい銅テープの 破断,終端接続部のトラッキングに関する事例およびその対策について説明する。

(1) 水トリー劣化

水トリー劣化とは、図 1.5 に示すとおり、ケーブル絶縁体周辺の水分と局部的な電界の 集中が原因で、絶縁体に白い樹枝状の欠陥が発生する絶縁劣化現象である⁽¹⁶⁾。水トリーは、 内部あるいは外部半導電層から発生する内導水トリーまたは外導水トリーと絶縁体中の異 物やボイドから発生するボウ・タイ状水トリーとに分類される。前者は、図 1.6 および図 1.7 に示すような半導電性テープ巻構造のケーブル(T-T タイプまたは E-T タイプ)に発生 することが多く、ケーブルの絶縁性能が大きく低下する。後者は、蝶ネクタイ状に成長す る水トリーで、内部・外部半導電層に到達すると、内・外導水トリー同様絶縁性能が大き く低下する。

11kV以下のクラスでは、水トリーが絶縁体を橋絡した後に部分放電が発生すると、電気 トリーが発生・伸展し絶縁破壊に至ることが確認されている。橋絡した内導水トリーで電 気トリーが発生し絶縁破壊直前の状態となっていた絶縁体をスライスし、メチレンブルー で染色した写真を図 1.13 に示す⁽¹⁸⁾。

図 1.13 先端に電気トリーが発生した橋絡水トリー(メチレンブルーで染色) : 絶縁破壊直前の状態⁽¹⁸⁾

1) 水トリー劣化および水トリー劣化による絶縁破壊事例

ケーブルが水に浸かっている埋設部で絶縁体に水トリーが発生しやすく,高圧 CV ケー ブルでは図 1.13 と図 1.14 に示すように絶縁体を橋絡した後絶縁破壊事故に至ったと思わ れる多くの事例がある。長時間にわたって水が存在する状態で電界にさらされたことが原 因であり,水分は,シース外部から浸入する他に,湿式架橋方式で製造されたケーブルの ように製造時から含まれているものもある。なお,水トリーの伸展速度は水質や水温など の要因で異なり,布設後 10 年未満で絶縁破壊事故に至った事例もある。

図 1.14 水トリー劣化による絶縁破壊例(21)

運転中に絶縁破壊が生じると、図 1.14 のように炭化した大きな破壊孔となり、水トリー による絶縁破壊か否かの判断ができないことが多い。そのため、破壊孔周辺に水トリーの 存在を確認することによって、水トリーによる絶縁破壊と推定している⁽²¹⁾。また、水トリ ーによる絶縁破壊は、運転中のみではなく、ケーブルの絶縁診断として実施される直流漏 れ電流測定中に生じることもある。そのため、橋絡水トリーが存在すると思われるケーブ ルに対して高電圧印加を伴う絶縁診断を実施する際には、測定中の絶縁破壊を発生させな いよう細心の注意が必要とされている。

2) 構造・材料および製造方法による水トリー劣化対策

CV ケーブル特有の水トリー劣化の問題が顕在化した後,主に水トリー劣化対策への取り組みにより,図 1.5 に示すような構造や材料,製造方法などの改良が行われてきている⁽²²⁾。その結果,絶縁厚の低減,ケーブルのコンパクト化につながっている⁽¹⁵⁾。また,重要線路においては,シースからの水分透過を防止するために,金属ラミネート遮水層を設けたケーブルを採用される場合がある。

3) 水トリー劣化による絶縁破壊の防止策

11kV 以下のクラスにおいては、運転中に絶縁破壊が生じる可能性が高いのは絶縁体を橋 絡した水トリーであることから、橋絡水トリーを検出することが重要となる。橋絡水トリ ーを絶縁特性の低下として捉えるためには、直流漏れ電流法の適用が最も有効とされてい る。しかし、5,000V 以上の直流高電圧の印加を必要とする場合が多く、直流高電圧印加の ダメージにより漏れ電流測定中または測定後の運転再開(交流電圧印加)時に絶縁破壊に 至ることがある。そのため、低い電圧からステップ昇圧させ、測定中または運転再開時の 絶縁破壊を避ける工夫がなされているが、絶縁破壊を完全に防止できるわけではない。

また, 直流重畳法, 低周波重畳法, 交流重畳法などのオンライン診断法も適用されてお り, 高圧 CV ケーブルの水トリー劣化に関しては, T-T タイプ/E-T タイプに対して実績も あり有効であると考えられている。一方, E-E タイプに対しては, 運転中に絶縁破壊を生 じる可能性が高い橋絡水トリーを検出できる直流重畳法は有効であると考えられるが, 低 周波重畳法や交流重畳法のような交流系の診断法は, 劣化以外の要因の影響が測定結果に 表れる場合があるので, 適用に際しては事前に有効性確認が必要である。

4) 絶縁修復剤による水トリー劣化ケーブルの延命策

海外では水トリー劣化した CV ケーブル(電気トリーの発生がないもの)の延命処置として,液状の絶縁修復剤を導体側から注入する技術が適用されることがある⁽²³⁾。米国で 30

年以上,欧州で20年以上,総延長40,000kmを超える実績が積み上げられており,国内で も14年で20回線,7.9kmの実績がある。

この絶縁修復剤はシリコーン系の有機材料で,水分と反応し副産物としてメタノールを 生成する。生成したシリコーン化合物は,絶縁体内に拡散し水分との反応を繰り返して高 分子化し,分子が大きくなることで絶縁修復と防水効果を発揮する。なお,メタノールは, 短時間で拡散し絶縁体内から抜けてしまう。

図 1.15 絶縁修復剤(Cable CURE)技術の適用イメージ⁽²³⁾

導体側から圧入するので、内導水トリーが発生しやすい T-T タイプの CV ケーブルには 効果があると考えられるが、外導水トリーが発生しやすい CV ケーブルでは遮へい層側か らの圧入に課題があり、E-T タイプや E-E タイプの CV ケーブルに対する効果は確認が必 要とされている。また、電気トリーが発生(部分放電が発生)しているケーブルには、修 復効果が期待できないことから適用の対象外とされている他、橋絡水トリーが存在すると 大きな漏れ電流が流れるので、国内では橋絡水トリーが存在するケーブルへの適用が敬遠 されている。

この絶縁修復剤を適用したケーブルでは,絶縁抵抗の低下(直流漏れ電流の増加)やtanδ の増加が生じることから,絶縁診断技術の適用を制限されている。そのため,海外では絶 縁修復剤を適用される電圧階級(恐らく,3.3~33kVクラス)のCVケーブルでは,絶縁診 断が実施されないことが多い。また,絶縁修復剤を適用するとケーブルの劣化程度や余寿 命評価が不可能となり,使用可否判断ができなくなることから,国内での導入は一部のユ ーザーに留まっている⁽²⁰⁾。

(2) 遮へい銅テープの破断

遮へい銅テープの破断は、水の影響を受けやすい布設環境にある CV ケーブルで発生す ることが多く、事故に占める割合が大きくなってきている。シース内への浸水により遮へ い銅テープの腐食から破断に至るケース、シースのシュリンクバックにより遮へい銅テー プのずれが生じ破断に至るケース、構造物の角にケーブルが押し付けられケーブルの伸縮 による応力で遮へい銅テープが破断に至るケースなどがある。

また,通電電流の変動に伴う温度変化でケーブル絶縁体の膨張・収縮が起こり,遮へい 銅テープに長手方向の座屈が生じることがある。この絶縁体の膨張・収縮が繰り返される ことによって,図1.16に示すような遮へい銅テープの長手方向の破断が生じる事例が確認 されている。このような現象は、シースに耐薬品性向上のためポリエチレンを適用したも のや防蟻のためナイロンを適用した、硬く熱収縮力が大きいシースのケーブルで生じやす い。遮へい銅テープが重ね巻きであれば、事故に至る可能性は小さいが、開き(ギャップ) 巻きの場合には事故に至りやすい⁽¹³⁾。

遮へい銅テープの腐食を引き起こすシース内への浸水としては、シースの外傷箇所から 入るもの、シースの水分透過によって入るもの、図 1.17 に示すようにビニルシースのシュ リンクバックによって接続部のテープ処理部から入るものなどがある。

図 1.16 膨張・収縮による長手方向の破断が生じた遮へい銅テープ (13)

図 1.17 ビニルシースのシュリンクバックによりテープ処理部からの浸水が疑われる例

1) 遮へい銅テープの腐食・破断による絶縁破壊事例

シース内への浸水により遮へい銅テープが腐食した事例を図 1.18 に示す。短期間で破断 に至るような腐食が進行しているものではないが,遮へい銅テープが開き(ギャップ)巻 きとなっているので,破断すると絶縁破壊事故に至りやすいケーブルである。遮へい銅テ ープの開き(ギャップ)巻きは、3 心一括形ケーブルに採用されるものが多いが、単心形 やトリプレックス形ケーブルで採用されているものもある。フィールドに布設されている ものの中には、図 1.18 よりさらに大きなピッチ(ギャップ)で遮へい銅テープが巻かれて いるものもある。

図 1.18 開き(ギャップ)巻きで腐食している遮へい銅テープ(12)

また,最近では, E-E タイプの 6.6kV の CV ケーブルにおいて,ビニルシースを透過した水分の影響で遮へい銅テープの腐食が確認されている⁽²⁴⁾。布設後 19 年経過した E-E タイプのケーブルにおいて,水が溜まった管路布設の部分で遮へい銅テープの破断が見つか

っており、その解体調査の写真を図 1.19 に示す。この例では、遮へい層の抵抗測定で異常 を捉え絶縁破壊事故を防止できているが、布設後 10 年以上経過したもので破断が確認さ れている。

銅テープ破断部付近の裏面

遮へい銅テープが破断すると,非接地状態となった遮へい銅テープに誘導される電圧に よって破断部で生じる放電と,充電電流による外部半導電層の発熱による炭化の進行によ って,絶縁破壊さらには火災に至ることがある⁽¹⁶⁾。遮へい銅テープの破断により焼損事故 に至った事例を図 1.20 に示す。

図 1.20 遮へい銅テープの破断による絶縁破壊事故例(16)

遮へい銅テープは,接地されている(接地端の)接続部付近で破断すると,その接地線 に流れる充電電流のほとんどが破断した部分の外部半導電層に流れることとなるので,短 時間で絶縁破壊に至る。逆に,接地されていない(非接地端の)接続部付近で破断した場 合は,破断した部分に流れる充電電流が小さくなるので,絶縁破壊に至るまでの時間が長 くなる。

図 1.19 E-E タイプの 6.6kV CV ケーブルでビニルシースの水分透過によって 遮へい銅テープの腐食と破断が確認された事例

2) 遮へい銅テープの腐食抑制のための浸水対策

遮へい銅テープの腐食を抑制するためのシース内への浸水対策としては、布設時および 布設後のシース外傷防止への配慮と、接続部におけるシュリンクバック抑制のためシース を適切に把持できる機材での固定が必要となる。

また,水分透過は,柔軟性の高いビニルをシースに適用され,通電電流の変化などによるヒートサイクルが大きいケーブルで生じやすい。そのため,シースの水分透過を抑制する必要があるような重要線路では,水トリー劣化対策を兼ね図1.21に示すような金属ラミネート遮水層を設けたケーブルを採用される場合がある。

図 1.21 アルミラミネート遮水層の構造および遮水層付 CVT ケーブルの例

3) 遮へい銅テープの破断による事故の防止策

遮へい銅テープの破断を放置すると、必ず絶縁破壊や発火などの事故に至る。遮へい銅 テープの破断による事故を未然に防止するためには、遮へい銅テープの抵抗値を管理して おくことが必要である。

遮へい銅テープの抵抗測定は、オフラインでテスターなどを用いて測定するのが安全で あり一般的であるが、オンライン用の常時監視システムに測定機能として組み込まれたも のや、オンラインで測定可能な測定装置が実用化されている。図 1.22 に、常時監視システ ムによるオンライン測定で遮へい銅テープの破断を捉えた事例を示す⁽²⁵⁾。また、専用の測 定装置ではないが、クランプ式の多重接地抵抗計で閉回路の抵抗を測定することによって、 遮へい銅テープの抵抗の異常を把握する簡易な測定法があり、一部のユーザーで採用され ている⁽¹⁰⁾⁽¹⁸⁾。これらの多重接地抵抗計は交流抵抗を測定するもので、測定精度は決して高 いものではないが、各相の遮へい銅テープの抵抗に目立つような差がないかを確認するこ とによって、遮へい銅テープの異常の有無を把握することができ、オンライン/オフライ ンを問わず測定できるという特長がある。

図 1.22 常時監視システムの遮へい層抵抗測定機能によって 遮へい銅テープの破断を検出した事例⁽²⁵⁾

(3) 終端接続部のトラッキングによる事故とその防止策

屋外設置の終端接続部において雨水やじん埃の付着や塩害が原因となり,火花放電を伴 うトラッキングにより表面が侵食される場合がある。この現象は,特に海沿いの塩害地区 で見られることが多く,放置すると図 1.23 に示すような焼損事故に至ることがある。また, 台風襲来時には海水が巻き上げられ,内陸地まで運ばれた塩水によりトラッキングが発生 し事故に至ることもある。

終端接続部のトラッキング対策としては,塩害地区に適用可能な耐塩害終端接続部(耐 塩端末)の採用が必要となる。また,トラッキングによる事故の防止策としては,定期的 な目視点検による異常の有無確認が必要となる。

図 1.23 終端接続部のトラッキングによる焼損事故例⁽¹⁸⁾

1.2.3 CV ケーブルの診断技術の動向

1959 年(昭和 34 年) に 3.3kV 用として CV ケーブルが導入開始されて以降,高圧(本 論文では 3.3/6.6kV クラスを指す)ケーブルは BN ケーブルから CV ケーブルへの更新が進 められ,2000 年代前半(平成 10 年代中頃)に BN ケーブルが姿を消している。高圧 CV ケ ーブルの導入開始以降,しばらくの間は BN ケーブルの診断技術と同様の絶縁抵抗(メガ ー)法や直流漏れ電流法が適用されていた。

1967年(昭和42年)頃、水トリーは XLPE 絶縁電線を水中モーター用のリード線とし て使用したもので確認されていたが、高圧 CV ケーブルでの発生が確認されたのは1971年 (昭和46年)頃と言われている⁽²⁶⁾。その後、水トリー劣化による絶縁破壊事故の増加に伴 い水トリーの特性や劣化検出方法に関する研究が行われ、1979年(昭和54年)頃からオ ンラインで直流電圧を重畳して絶縁抵抗を測定する直流重畳法が適用されるようになった。 1985年(昭和60年)には水トリーの整流作用を利用した直流成分法が実用化された。直 流成分法は、国内の主要な高圧 CV ケーブルユーザーに導入され、2000年(平成12年) 頃までは最も普及したオンライン診断法となった。

1988年(昭和63年)頃までは、オフライン診断法の絶縁抵抗法や直流漏れ電流法、オンライン診断法の直流重畳法や直流成分法、活線 tanð 法が主流であったが、研究が進められ新たな診断法の開発や実用化が行われてきた。各種診断法の導入当初は、診断の結果不良判定となったものが更新され、事故を未然に防止できる割合が高かった。しかし、1990年(平成2年)以降の研究成果やフィールドで得られた実態によって水トリーの特性が明らかとなり、運転電圧において必要な絶縁性能や各診断法の課題や問題点が明らかとなった。オンライン診断の結果良判定となったケーブルの 60%で絶縁破壊事故が発生するとい

う地域も出るほど大きな問題となったこともあり,現在はそれ以外の診断法が適用されて いる⁽¹³⁾。

1990年(平成2年)以降運転状態における水トリーの特性が明確になり,3.3~11kVの CV ケーブルの診断法としては,運転中に絶縁破壊を生じる可能性が高い橋絡水トリーの 検出を目的としたオフラインまたはオンライン診断法が採用されるようになってきている。 橋絡水トリーの劣化検出性能は直流漏れ電流法が最も優れていることから,オンライン診 断の結果,要注意または不良判定が得られたケーブルを対象にオフラインでの直流漏れ電 流測定による精密診断を行い,その結果を以て更新の必要性を判断するのが一般的である。 また,停電の調整が比較的容易な設備の場合,直流漏れ電流法のみ適用されるところもあ る。

接続部に特殊な材料を使用しているもの、半導電層がないものや遮へい層の施し方が異なる 3.3kV の CV ケーブル、さらに E-E タイプの CV ケーブルでは、交流系のオンライン診断法で劣化判定ができない場合があり、対象とするケーブルへの有効性を確認した上で適用する必要があることも分かってきている⁽¹³⁾。

一方,22kV以上のCVケーブルに関しては、未橋絡状態の水トリーによる絶縁破壊事故 が大半を占めると考えられていることから、未橋絡水トリーの検出を目的としたオフライ ン診断法が実用化されている。水トリーが長い(残存絶縁厚が薄い)ものほど絶縁破壊電 圧が低下することから、水トリー長に応じた劣化信号が得られる診断法が適用されている。 従来適用されていた直流漏れ電流法は未橋絡水トリーの検出が困難であることから、ケー ブル本体ではなく接続部の劣化診断法として適用される場合がある⁽¹³⁾。

6.6kV の乾式架橋方式で製造された E-E タイプの CV ケーブル導入から 30 年以上経過 し,水トリー劣化の発生・伸展が生じにくくなっていることが分かってきている。その反 面,遮へい銅テープの破断による絶縁破壊事故の割合が増加傾向にあるため,遮へい層(遮 へい銅テープ)の抵抗測定などによる遮へい銅テープの腐食・破断の検出にも目を向ける 必要性が高まっている。

なお,絶縁体の診断技術の変遷や各種の診断技術の詳細については,第2章で触れることとする。

-22-

1.3 研究目的と本論文の概要

CV ケーブルが高圧ケーブルとして導入開始された 1959 年(昭和 39 年)以降,水トリ ー劣化による高圧 CV ケーブルの絶縁破壊事故が多発した 1970 年代後半(昭和 54 年頃) から 1980 年代後半(昭和 63 年頃)にかけ,様々な絶縁体の診断法が研究開発され実用化 された。1988 年までにフィールドでの適用が開始された主な診断法として,絶縁抵抗法, 直流漏れ電流法,誘電正接(tanδ)法などのオフライン診断法と,直流重畳法,直流成分法, 活線 tanδ 法などのオンライン診断法があり,次のような課題があった。

- 絶縁抵抗法は、水トリー劣化の検出性能が不十分で、停電が必要
- 直流漏れ電流法は、水トリー劣化の検出性能が高いが、停電と高電圧印加が必要
- 誘電正接法は、局部的な劣化検出が困難な上、停電が必要
- ・ 直流重畳法は、EVT 中性点の改造が必要で、直流電圧の重畳が困難な場合がある
- 直流成分法は、データの蓄積が必要な段階で、劣化検出性能に疑問な点がある
- 活線 tanδ 法は, 停電は不要であるが, 局部的な劣化検出が困難

1987 年(昭和 62 年) これらの課題に着目した鹿島氏らは,直流系診断法と交流系診断 法の長所を併せ持ちそれぞれの短所を補うような診断法として,低周波重畳法の開発に着 手した⁽²⁷⁾。1990 年(平成 2 年)に上島氏らによって低周波重畳法による CV ケーブル活線 劣化診断装置 CMLF が実用化され⁽²⁸⁾⁽²⁹⁾,1993 年(平成 5 年)から図 1.24 に示す CMLF を 用いたオンライン診断の本格運用が開始された⁽³⁰⁾。

実用化以降の技術的対応を行う中で、実験室とフィールドでの測定結果の相違点の他、 測定回路および測定方法と測定原理の整合性について課題があることを認識した。そのま までは、低周波重畳法が高圧 CV ケーブルのオンライン診断法としての信頼を損ない兼ね ないと考えた著者は、測定原理の理論的検証を行い、その結果明らかになった課題の解決 を目的とし低周波重畳法の測定原理を忠実に実現できる測定方法の開発に着手した。また、 水トリー劣化を含む様々な劣化は損失電流の増加を伴うことから、劣化の度合いと相関の 高い結果が得られることを期待し、信頼性の高いオンライン診断法の開発を目指して取り 組んだ。その結果、1993 年(平成5年)に交流絶縁抵抗測定法を考案し、翌年に自動測定 可能な交流絶縁抵抗測定装置 AIR を開発した。さらに、交流絶縁抵抗測定法は、等価回路 による計算およびシミュレーションで、低周波重畳法の原理に基づく測定が可能であるこ とを確認するとともに、実験室およびフィールドでの検証と測定結果の再現性を調査検討 し、特異な条件を除いて信頼性の高い測定が可能であることを確認した。

現在運用されている装置は図 1.25 に示す AIR-IVであるが、AIR-I~IVに至る4機種の開発によって CMLF の隠れた問題が顕在化し、4 機種すべてがこれらの対策を反映したものとなっている。実際に、実験やフィールドデータの収集に適用した装置は AIR-IIと AIR-IV

であり、CMLF 3 号機と AIR-IIのフィールドでの比較検証試験によって AIR の優位性を確認した。

本学位論文では、AIR を開発する際に得られた水トリーの特性に関する知見を整理し、 従来の劣化検出技術を見直して課題を抽出し、それらを解決することにより診断精度の向 上を図った技術をまとめたものである。また、フィールドで収集した劣化ケーブルの診断 データを整理分析し、水トリーの検出性能を確認した。さらに、AIR を用い水トリー劣化 の詳細な特性を調査することによって、橋絡水トリーと未橋絡水トリーを区別できないか について検討し、他の診断法との比較評価を実施した上で、一連の検討結果に関するまと めを行った。

図 1.24 低周波重畳法導入当初の CV ケーブル活線劣化診断装置(CMLF 3 号機)

図 1.25 交流絶縁抵抗測定法を採用した CV ケーブル活線劣化診断装置(AIR-IV)

本研究に関する目的や経緯について上述したが、本論文の概要を以下に述べる。本論文 は6つの章から構成されており、第1章では序論として研究背景および研究分野の技術動 向と、水トリー劣化の検出性能向上につなげるための測定技術の向上に関する取り組みの 概要を説明した。第2章では、水トリーの構造および発生・伸展と電気的特性について調 査・分析した結果を紹介し、水トリー劣化したケーブルのトラブルや劣化信号に及ぼす劣 化以外の電気的特性の影響を調査し整理した。そして、水トリー劣化の検出を目的とした 各診断技術の調査を行い、その歴史と各診断技術の概要についてまとめを行った。第3章 では高圧 CV ケーブルのオンライン診断法として開発・実用化された低周波重畳法の開発 およびその概要について述べ,低周波重畳法導入当初の測定装置 CMLF の課題解決と水ト リー劣化検出性能向上を目的として開発した交流絶縁抵抗測定装置の概要を説明した。さ らに, 交流絶縁抵抗測定法の測定理論と測定方法に基づく測定範囲と測定誤差について, 数値計算による検討結果をまとめた。 第4章では, 当初低周波重畳法による配電用高圧 CV ケーブルのオンライン測定装置として適用されていた CMLF と新たに開発した交流絶縁 抵抗測定装置 AIR の比較検証試験を行い, AIR のフィールド適用の効果について検討した。 さらに、AIR によるオンラインおよびオフライン測定によってフィールドデータを収集し、 低周波重畳法の測定装置としての評価を行った。第5章では、水トリーの電気伝導機構に 基づく各診断法の劣化信号ついての検討と, AIR などを用いた測定により水トリーの特性 確認を行い、水トリー劣化の検出性能について考察した。そして、各診断法との比較検証 試験を実施して、水トリー劣化や交流破壊電圧との相関について分析を行い、交流絶縁抵 抗測定装置 AIR を用いた低周波重畳法と他のオンライン診断法との比較評価を行った。さ らに、22kV 以上の CV ケーブルの水トリー劣化診断法としての適用の可能性について示し た。第6章では、以上の各章を総括し本論文の結論をまとめるとともに今後の課題につい て述べた。

- (1) 例えば、電気学会:「電気の知識を深めようシリーズ」、Vol.1、2冊(2016)
- (2) 例えば、中国電力:「電気はどうやってできるの?-電気の歴史-」、中国電力ホーム ページ
- (3) 例えば、小木曽勝也:「小特集:電気機器の難燃化(I.電気機器に対する難燃化の要請とその現状)」、電気学会雑誌、Vol.101、No.2 (1981)
- (4) 例えば, 電気事業連合会:「明治時代 電気の歴史年表」, 電気事業連合会ホームページ
- (5) 榎並俊一:「電線・ケーブルの接続・分岐および端末処理(1/3)」,計装工事, Vol.20, No.4 (2001)
- (6) 地中送電ケーブルの保全技術専門委員会:「地中送電ケーブルの保全技術」,電気協同 研究,第70巻,第1号(2014)
- (7) 住友電気工業:「SEI WORLD 2014 年 10 月号」, Vol. 445 (2014)
- (8) 長崎昌司・中村英士:「最近の電力ケーブル(1)電力ケーブル発達の歴史」,電気評論(1975)
- (9) 蒲原弘昭:「用途から見た電気機能材料:電力ケーブル」,電材ジャーナル,第 627 号 (2015)
- (10)蒲原弘昭:「高圧 CV ケーブルの劣化と保守点検」, OHM, Vol.106, No.9, pp.24-29 (2019)
- (11)速水敏幸:「CV ケーブル」, コロナ社(1986)
- (12)蒲原弘昭:「ケーブルの絶縁診断技術」, OHM, Vol.104, No.8, pp.35-40 (2017)
- (13)電気学会・技術伝承を目的とした電力設備の絶縁診断技術調査専門委員会:「電力機 器・設備の絶縁診断技術」,オーム社(2015)
- (14)電気学会・地中配電用ケーブルの信頼性向上調査専門委員会:「地中配電ケーブルの 信頼性向上技術」,電気学会技術報告(Ⅱ部),第404号(1992)
- (15)電気学会・電力設備の絶縁材料から見た劣化診断技術調査専門委員会:「電力設備の 絶縁材料と劣化診断技術」,電気学会技術報告,第1245号(2012)
- (16)日本電線工業会:「高圧 CV ケーブルの保守・点検指針」,技術資料,技資第116号 D (2012)
- (17)大髙巖:「ケーブルへのプロアクティブ手法の活用」, OHM, Vol.102, No.7, pp.24-26 (2015)
- (18)蒲原弘昭:「特高・高圧ケーブルの保守・点検の実務に適用できる技術」, OHM, Vol.105, No.7, pp.6-10 (2018)
- (20)栗原隆史・筒井英司・中西英治・真木清士・村川健一・森本光滋・髙橋俊裕・岡本達 希:「乾式架橋・三層同時押出(E-E 方式)の6.6kV 撤去 CV ケーブルの水トリー劣化 調査」,電気学会論文誌 A, Vol.136, No.3, pp.333-343 (2016)
- (21)蒲原弘昭:「事故トラブル事例から学ぶ-高圧電気設備の工事・運転・保守-9.高圧 CV ケーブルの劣化・トラブル事例とその対応策および絶縁診断技術の紹介」,日本電 気技術者協会編, pp.82-94 (2018)

- (22)電気学会・配電線地中化の技術動向と課題調査専門委員会:「配電線地中化の技術動向と課題」,電気学会技術報告,第1107号(2008)
- (23)UtilX 社:「Cable CURE 技術の紹介と応用」, セミナー資料 (2006)
- (24)中野和之・吉田鯉輔・菊地喜典・佐藤智之・万木剛・鎌田智之:「6.6kV CV ケーブル 遮蔽層の劣化特性調査(第3報)」,令和2年電気学会電力・エネルギー部門大会講 演論文集, No.271 (2020)
- (25)江藤計介:現場におけるトラブル事例と絶縁診断の実態,診断で劣化を捉えた事例, OHM, Vol. 104, No. 8, pp. 56-60 (2017)
- (26)福田正:「架橋ポリエチレンケーブルの水トリー」, 電気学会雑誌, Vol.94, No.9 (1974)
- (27)鹿島脩一・熊井久之:「低周波重畳法による CV ケーブル活線劣化診断法の検討」,昭和63年電気学会全国大会講演論文集, No.1335 (1988)
- (28)上島征行・中西公男:「低周波重畳法による CV ケーブル活線劣化診断装置」, OHM, Vol.77, No.5, pp.49-55 (1990)
- (29)上島征行・山本壽昭:「CV ケーブル活線劣化診断装置の開発」,九州電力研究報告, Vol.73, No.91006 (1991)
- (30)蒲原弘昭・工藤善則・伊藤彰・速水敏幸・伊藤泰郎:「低周波重畳法による高圧 CV ケーブルの絶縁診断について」,第157回電気材料技術懇談会資料(2)(2001)

第2章 CV ケーブルの水トリー劣化とその診断技術

2.1 緒言

1967年(昭和42年)に、水トリーは XLPE 絶縁電線を水中モーター用のリード線とし て使用したもので確認されていたが、高圧 CV ケーブルで水トリーの発生が確認されたの は1971年(昭和46年)頃である⁽¹⁾。このトリーは、水が関与し比較的低電界でかつ長時 間を要して発生することから、電気トリーと区別し水トリーと名付けられた。その後、水 トリー劣化による絶縁破壊事故の増加に伴い水トリーの特性や劣化検出方法に関する研究 が行われている。

水トリー劣化とは、ケーブル絶縁体周辺の水分と局部的な電界の集中が原因で、絶縁体 に白い樹枝状の欠陥が発生する絶縁劣化現象である⁽²⁾。水トリーは、内部あるいは外部半 導電層から発生する内導水トリーまたは外導水トリー(界面水トリー: Vented Tree (VT)) と絶縁体中の異物やボイドから蝶ネクタイ状に発生・伸展するボウ・タイ状水トリー(Bowtie Tree (BTT))とに分類される。界面水トリーは、半導電性テープ巻構造のケーブル(T-Tタイプまたは E-T タイプ) に発生することが多く、ケーブルの絶縁性能が大きく低下す る。ボウ・タイ状水トリーは、成長し内部・外部半導電層に到達すると、界面水トリー同 様絶縁性能が大きく低下する。

本章では,水トリーの構造および発生・伸展と電気的特性について調査・分析した結果 を紹介し,水トリー劣化したケーブルのトラブルや劣化信号に及ぼす劣化以外の電気的特 性の影響を調査し整理した。そして,水トリー劣化の検出を目的とした各診断技術の調査 を行い,その歴史と各診断技術の概要についてまとめを行った。

2.2 水トリーの発生・伸展と特性

2.2.1 水トリーの構造

水トリーは,発生起点や形状から,内導水トリーまたは外導水トリーと呼ばれる界面水 トリー(VT)とボウ・タイ状水トリー(BTT)とに大別される。この二つの水トリーに共 通したミクロ的な特徴は次の3点である⁽³⁾。

①ミクロボイド(0.1~10µm 程度)の集合体である。

②パス(チャネル:~1µm)が認められる。

③白濁部分(0.1µmに及ぼない微小変質部)を持つ。

ポリエチレンは図 2.1 に示すように,主鎖の炭素 C がジグザグ状に結合したエチレン CH₂の重合体で結晶性のある鎖状高分子である。この鎖状高分子が折り畳まれ,図 2.2 に 示す 10nm 程度のラメラと呼ばれる板状結晶を形成する⁽⁴⁾。さらに,ラメラが核を中心に 放射状に成長することによって球晶が形成される。これらのラメラや球晶の界面には非晶 領域が存在しており,水トリーとして確認されるミクロボイドやパス(チャネル),白濁部 分は,この非晶領域に形成されやすいと考えられている⁽⁵⁾⁽⁶⁾。

図 2.1 ポリエチレンの分子構造と配置

図 2.2 ポリエチレンの微細構造(6)

2.2.2 水トリーの発生要因

「水トリーとは、ポリエチレンのような絶縁材料が長時間にわたって、水が共存する状態で電界に曝された時に発生するもので、その形態は、水で充填される余地のある種々の 樹枝状の微細な通路、あるいは空隙である。」と定義されている⁽⁷⁾。水分が充填されている 時は白い樹枝状に見えるが、乾燥すると見えなくなる。見えなくなった水トリーは、長時 間水に浸けて水分を供給すると再現し、熱湯中で煮沸すると短時間で再現することができ る。また、ポリエチレンなどの結晶性高分子で発生しやすく、これらの絶縁材料において 局部的な不整などにより電界が集中しやすい部分があり、そこに水分が供給されると水ト リーが発生・伸展しやすいことが分かっている。

水分については,製造過程で含まれてしまうものと布設後に浸入するものがある。製造 過程で含まれてしまう水分としては,XLPE の絶縁押出工程において高温高圧の水蒸気を 用いる湿式架橋方式で製造された場合に,XLPE 絶縁体内に含まれる水分が多くなること が知られている。高温高圧の窒素(N₂)ガスを用いる乾式架橋方式で製造されたものと湿 式架橋方式で製造されたものの XLPE 絶縁体の厚み方向の水分量分布を図 2.3 に示す⁽⁸⁾⁽⁹⁾。

水トリーの発生・伸展については,熱力学的考察,電磁気学的考察など様々な検討がな されてきているが定説はなく,各種の分析結果より,酸化進行→微小変質部形成→変質度 増大,領域拡大⇒ミクロボイド形成⇒ミクロボイド連結⇒パス(チャネル)形成という過 程が想定されている⁽³⁾。また,水トリー劣化部の顕微 FT-IR などの分析結果によると,カ ルボニル基(>C=O)などの極性基の存在が確認されており,水トリーの発生・伸展によっ てポリエチレンの非晶領域の分子鎖の切断・酸化が生じ,極性基が結合しているものと考 えられている⁽⁵⁾。

図 2.3 架橋方式の違いによる XLPE 絶縁体中の水分量分布⁽⁸⁾⁽⁹⁾

また、布設後に水分がケーブル内に浸入する事例として、次のようなものがある。

①水に浸かった状態で使用されることによって、ビニルシースを透過した水分がケーブル内に浸入する。

②接続部の施工不良などによって、水分がケーブル内に浸入する。

- ③シースの外傷箇所やシースのシュリンクバックなどによって,水分がケーブル内に浸 入する。
- 次に、電界の集中については、次のような原因によるものであることが分かっている。 ①内部・外部半導電層を半導電性テープで形成すると、図 1.6 に示すようにテープ端部

に突起や空隙が形成される。この部分は,XLPE 絶縁体,半導電性テープ,空気から なるトリプルジャンクションとなり,電界が集中しやすくなる⁽¹⁰⁾。

- ②当初の半導電性テープに使用された布テープは毛羽立ちやすく,これが突起となり電 界集中の起点となる。
- ③図 2.4 に示すように、乾式架橋方式で製造された XLPE 絶縁体に比べ湿式架橋方式で 製造された XLPE 絶縁体は、絶縁体中のボイドの径が大きく数も多いことが確認され ており、これらが電界集中の起点となる⁽⁶⁾⁽¹¹⁾。
- ④原材料となるポリエチレンレジンに混入する異物、材料の混合および輸送中に混入する異物、押出工程で発生するアンバー(ヤケ樹脂)などが存在する状態で XLPE 絶縁体が形成されると、これらの異物が電界集中の起点となる。

図 2.4 乾式架橋方式の導入によるボイド低減効果(の)

これらの水トリーの発生・伸展の対策として,図 1.5 に示す次の対策が講じられてきて いる⁽¹²⁾。

①局部的な電界の集中をなくす目的で XLPE 絶縁体と半導電層の界面を平滑化するため、
 半導電性テープから押出半導電層にする。(T-T タイプ ⇒ E-T タイプ:内導押出 ⇒
 E-E タイプ:内・外導押出)

- ②製造過程で含まれてしまう水分量と生成されるボイドを減少させるために、湿式架橋 方式から乾式架橋方式に変更する。
- ③異物やアンバー(ヤケ樹脂)を減少させるために、クリーンなポリエチレン原料の開発と異物混入や異物を押出工程で除去できるクローズドシステム押出を適用する。
- ④さらに、①と②を組み合わせ乾式架橋方式による三層同時押出(E-E タイプ)で、内部・外部半導電層と XLPE 絶縁体を形成する。

2.2.3 水トリーの発生・伸展に及ぼす影響

水トリーが発生すると、電界の集中と水分の供給により伸展する。水トリーの発生・伸 展に影響を与える要因としては、①電圧、②周波数、③課電時間、④温度、⑤水分量、⑥ 水質、⑦溶媒、⑧発生核、⑨高分子材料の材質などがあげられている⁽⁵⁾。

また,最近の研究により XLPE 絶縁体の熱機械的特性が評価された結果,融点以下での 熱膨張率は 76.7℃付近で最も大きくなり(図 2.5),ヤング率と硬度は室温~70℃付近まで は線形的に低下し 70~90℃では低下率が緩やかになる(図 2.6)ことが確認されている。 そのため,70℃付近の温度で浸水課電を行うと,XLPE 絶縁体内に水分が拡散しやすくな り,高電界下では非晶領域で水分が凝集しやすくなること,微視的な XLPE 絶縁体の弾性 率や硬度が低下して微小ボイドが形成されやすくなり,水トリーが伸展しやすくなること が確認されている⁽¹³⁾。

図 2.5 XLPE 絶縁体の熱膨張率の温度変化⁽¹³⁾

図 2.6 XLPE 絶縁体のヤング率と硬度の温度変化(13)

著者も,図 2.7 に示す装置を作製し,表 2.1 に示す試料および条件で,浸水下でヒートサ イクルを付与した高周波加速劣化試験を実施した。なお,試験開始後電源容量に余裕があ ることが確認されたので,周波数を 1,200Hz⇒1,500Hz⇒1,800Hz と上昇させ,また,水ト リーの成長が加速することを期待して,高温時の水温を 70℃から XLPE 絶縁体の熱膨張率 が大きくなる 76℃に上昇させている。

さらに、No.2の試料では、150日間の浸水課電後給水を停止し室温乾燥状態で課電試験 を実施している。これは、文献(13)による浸水課電試験において、90日程度経過するとボ ウ・タイ状水トリー長が 4mm 程度で飽和傾向になることが確認されており、著者も同様 の傾向を確認済みであったことから、湿潤状態から乾燥状態に移行する過程で課電するこ とにより、水トリーが伸展する可能性を確認するために実施したものである。

図 2.7 浸水課電試験装置の概要

試料および条件						
電圧		13kVrms(公称電圧 22kV の対地電圧相当)				
周波数		1,200Hz 1,500Hz		1,800Hz		
水質		水道水				
日数		30日間 🗪 120日間 🔿		60日間		
22kV CV		給水				
600mm ² 紬緑厚 6mm	10.1	70°C[3h]⇔OFF[5h] 76°C[3h]€		⇔OFF[5h]		
乾式架橋 E-E	No 9	給水		給水なし(乾燥)		
(1988 年製)	10.2	70°C[3h]⇔OFF[5h]	76°C[3h]⇔OFF[5h]	室温		

表 2.1 浸水課電試験の試料および条件

表 2.2 浸水課電試験を行ったケーブルの交流破壊電圧と水トリー発生状況

試料	交流破壊 電圧	絶縁破壊箇所を除 く最大水トリー長	水トリー発生状況
No.1	90kV	3.33mm	
No.2	120kV で 破壊せず	4.20mm	

高周波加速劣化試験終了後,交流破壊試験を実施し解体調査による水トリー発生・伸展 状況を確認した結果を表 2.2 に示す。No.1 に比べ No.2 で発生していた水トリーが長いに もかかわらず 120kV までの電圧で絶縁破壊を生じなかったのは,乾燥させたことによって 水トリー劣化部の水分がほとんどなくなり,電界が集中しにくい状態になっていたためで はないかと考えられる。また,絶縁破壊箇所を除いているものの No.1 の最大水トリー長 3.33mm に対し乾燥状態での課電を行った No.2 の最大水トリーが 4.20mm に達しているこ とから,150 日の浸水課電後,湿潤状態から乾燥状態に移行する過程での課電によって, 水トリーの成長が促進された可能性が考えられる。また,乾湿の繰り返しが生じやすい電 柱の立上り部の水面付近が最も水トリーが発生・伸展しやすいというフィールドの実態が あることなどから,給水+ヒートサイクルの期間に乾燥させる期間を設けたサイクル条件 で高周波課電試験を実施すると,水トリー長が飽和することなく伸展する可能性が考えら れる。 以上の水トリーの発生・伸展に及ぼす影響の調査および実験によって得られた結果の概 要を表 2.3 に示す。

要因	水トリーの発生・伸展に及ぼす影響			
	・界面水トリーの発生数・長さが増大			
①電圧	・ボウ・タイ状水トリーの発生数が増加			
②周波数	・電圧のゼロクロス数に応じて水トリー長が増大			
①囲雲吐明	・界面水トリーの長さが増大			
③硃龟时间	・ボウ・タイ状水トリーの長さが増大するが、飽和傾向を示す			
	・温度とともに発生数は増加するが、水トリー長は大きく変化しない			
()))泪 庄	・70℃付近での浸水課電で、ボウ・タイ状水トリーの伸展速度が増大する			
④偏度	が、飽和傾向を示す(乾燥のサイクルを追加することで、飽和傾向を抑			
	制できる可能性あり)			
⑤水分量	・水トリーの発生数が増加			
	・電解質溶液>水道水>脱イオン水の順に水トリーの発生数・長さが増大			
③ 水 啠	・イオン濃度の増加とともに発生数が増加			
0小貝	・アニオン(陰イオン)に比ベカチオン(陽イオン)の影響が大きく,還			
	元電位が大きくなるほど水トリー長が増大			
⑦凉柑	 ・誘電率の高い溶媒ほど電解質がイオン解離しやすく、水トリー発生・伸 			
①俗妹	展への影響大			
◎ 惑开技	・ボウ・タイ状水トリーの発生核として,銅粉>アンバー(ヤケ樹脂)>			
0 先 土 核	ボイドの順に発生数が増加			
①材質	・ラメラ界面の非晶領域に比べ球晶界面の非晶領域が損傷を受けやすく,			
914頁	球晶が大きく数が少ないほど,水トリーの伸展速度が増大する			

表 2.3 水トリーの発生・伸展に及ぼす要因と影響(3)(5)(13)

2.2.4 水トリーの電気的特性

CV ケーブルに発生した水トリーは、XLPE 絶縁体とは全く異なる特性を示すことが分かっている。水トリー劣化の電気的な特性を簡単に理解するために、水トリー劣化部を抵抗 R、未橋絡水トリーの健全部(残りの XLPE 絶縁体)を静電容量 C とし、表 2.4 に示すよう に、橋絡水トリーは抵抗 R、未橋絡水トリーは抵抗 R と静電容量 C の直列等価回路として 考えることが多い。この等価回路に基づくと、直流電圧の印加に対し、橋絡水トリーには 漏れ電流が流れるが、未橋絡水トリーの場合は充電電流以外の電流がほとんど流れない。 一方、交流電圧の印加に対しては、橋絡水トリーでは損失電流が流れ、未橋絡水トリーの 場合でも健全部の静電容量 C に流れる充電電流が水トリー劣化部の抵抗 R に流れること により損失電流が生じる。そのため、水トリーの電気的特性を検討するためには、橋絡水 トリーの特性を把握しておくことが重要となる。

絶縁体を 0.5mm の厚さにスライスし メチレンブルーで染色した断面写真	等価回路	電気的特性
橋絡水トリー	内部半導電層	・水トリー劣化部が非線形な
		要素を含む抵抗で表され,
		直流・交流のいずれの電圧
Helen was a started by the		印加においても伝導性電流
		が流れる。
	外部半導電層	
未橋絡水トリー	内部半導電層	・水トリー劣化部が非線形な
		要素を含む抵抗,健全部が
	R	静電容量で表される直列回
		路となり、直流電圧を印加
MA. MA	\overline{C}	した場合は充電電流以外の
the alle	外部半導電層	電流がほとんど流れない。
1.00mm/div		・一方、交流電圧を印加した
		場合は静電容量に流れる充
		電電流が水トリー劣化部の
		抵抗に流れ損失電流が生じ
		る。

表 2.4 橋絡水トリーと未橋絡水トリーの等価回路と電気的特性

(1) 直流電気伝導特性

図 2.8 に示すように、橋絡水トリーではおおよそ 0.1µA 以上の漏れ電流が流れるが、未 橋絡水トリーでは 1nA 以下と漏れ電流がほとんど流れないこと⁽¹⁴⁾、乾燥処理によって橋絡 水トリー内の水分が少なくなると漏れ電流がほとんど流れなくなることが確認されている ⁽¹⁵⁾⁽¹⁶⁾。さらに、図 2.9 に示すように、橋絡水トリーの電圧-電流特性はオーム則には従わ ないこと、印加電圧の極性によって漏れ電流の大きさが異なり、水トリーの起点側の電圧 が正極性に比べ負極性の方が漏れ電流が大きくなる傾向があることが確認されている⁽¹⁷⁾。 これらのことから、水トリーを非線形抵抗と見なして特性に関する検討が行われている。

図 2.8 1 個の橋絡および未橋絡水トリーの直流漏れ電流⁽¹⁴⁾

図 2.9 橋絡水トリーが発生した CV ケーブルの直流漏れ電流の電圧依存性(17)

(2) 交流電気伝導特性

水トリー劣化したケーブルは誘電損失が大きくなることが知られており、橋絡水トリー では導電損失が大きいため印加電圧の上昇とともに誘電損失が急増すると考えられている ⁽¹⁸⁾。また、水トリー劣化したケーブルに交流電圧を印加すると、損失電流波形に歪が生じ ることが確認されている⁽⁵⁾⁽¹⁹⁾。図 2.10 に水トリー劣化したケーブルに交流電圧を印加した 時に観測された損失電流のリサジュー波形 (V-I 特性)と損失電流波形を示す⁽²⁰⁾。リサジ ュー波形は原点対象のヒステリシスループとなっており、水トリーの伸展具合によりその 形状が変化する。特に、橋絡水トリーが多くなるにつれヒステリシスループが潰れて1本 の曲線に近付いていく⁽⁵⁾。

(a) リサジュー波形

(b) 損失電流波形

図 2.10 水トリー劣化 CV ケーブルの損失電流波形例⁽²⁰⁾ V(t): 2.2kV/div, i_p(t): 15µA/div, t: 2ms/div

また,損失電流の高調波成分については,第3高調波成分が最も大きく,その大きさや 重畳位相と水トリー劣化程度との関係が調査されている。図2.11は,厚さ0.5mmのXLPE シートの片面をサンドペーパーで荒らし,この面に1NのNaCl水溶液電極を設け,1kHz-3.4kVrmsの電圧を印加し水トリーを発生させたXLPEシートの第3高調波成分の振幅およ び印加電圧に対する重畳位相の変化を示したものである⁽²¹⁾。図中の試料番号④~⑥はサン ドペーパーで荒らした面積が大きく水トリー発生密度が大きいものである。

課電時間が約100時間の時点でシート厚の40~50%,約300時間の時点で80~90%の水 トリー長となっており,水トリーの伸展に伴い第3高調波成分の振幅の増加,重畳位相の 変化が起こることが確認されている。これらの結果から,第3高調波成分の振幅と重畳位 相は水トリーの発生密度や長さに関する情報を含んでいるものと考えられている⁽²¹⁾。

(a) 第3高調波成分の振幅変化
 (b) 第3高調波成分の重畳位相変化
 図 2.11 水トリー劣化させた XLPE シートの損失電流第3高調波成分の変化⁽²¹⁾

(3) 空間電荷の蓄積特性

1980年代前半(昭和 56 年頃)から,固体絶縁体中に蓄積された空間電荷分布を測定で きる技術として,圧電素子誘起圧力波法(PIPWP法),レーザー誘起圧力波法(LIPP法), パルス静電応力法(PEA法)が開発されている⁽²²⁾。近年の PEA法は様々な改良が行われ ており,空間電荷分布の測定ができるようになったことで,水トリー先端部に電荷が蓄積 され,その電荷量はほぼ印加電圧の大きさに追随して変化することが分かってきた。図 2.12 は,水トリー長と最大空間電荷形成位置の関係を示したものであるが,水トリー長と最大 空間電荷形成位置は良く対応していることが分かる。この現象は,水トリー劣化部の高い 導電率に起因した界面分極によって生じるものと考えられている⁽²³⁾。

図 2.12 水トリー長と最大空間電荷形成位置の関係(23)

2.3 水トリー劣化したケーブルについて

2.3.1 水トリー劣化したケーブルによるトラブル

未橋絡水トリー部分の健全部の厚み(残存絶縁厚)に対する絶縁破壊電界は、ボウ・タ イ状水トリーに比べ内導水トリーや外導水トリーの方が低いことから、内・外導水トリー の有害性が高いことが分かっている⁽²⁴⁾。しかしながら、ボウ・タイ状水トリーも内部半導 電層や外部半導電層に到達すると、内・外導水トリーと同様に絶縁破壊電界が低下し有害 性が高くなると考えられている⁽³⁾⁽²⁵⁾⁽²⁶⁾。

運転電圧が 11kV 以下のクラスでは、水トリーが絶縁体を橋絡した後に部分放電が発生 すると、電気トリーが発生・伸展し絶縁破壊に至ることが確認されている⁽¹⁰⁾。一方、運転 電圧が 22kV 以上のクラスでは、撤去ケーブルで 2 例の橋絡水トリーが確認されている ⁽²⁷⁾⁽²⁸⁾が、うちー例は運転中に絶縁破壊事故を起こしたケーブルで確認されていることから、 橋絡水トリーの検出では絶縁破壊事故を未然に防止できないと考えられている⁽⁵⁾⁽²⁸⁾。その ため、運転中の絶縁破壊事故を防止する上で、11kV 以下では橋絡水トリー、22kV 以上で は未橋絡水トリーの検出が必要となる。

水トリー劣化による絶縁破壊事故が発生すると、電力の供給支障を招き、回線の重要度 によっては、大きな被害と損害を発生させることになる。CV ケーブルの水トリー劣化に よる供給支障事故は、次の場合に発生している。

①運転電圧に耐えられなくなって絶縁破壊が生じる場合

②開閉器や遮断器の開閉によって発生したサージ電圧(異常電圧)に耐えられなくなっ て絶縁破壊が生じる場合

③同一系統の他の電気設備(他のケーブル含む)で絶縁破壊(一線地絡)事故が発生した時の健全相の電圧上昇(公称電圧 6.6kV の場合,対地電圧 3.8kV が最大 6.9kV に上昇)によって絶縁破壊が生じる場合

④雷サージ電圧によって絶縁破壊が生じる場合

2.3.2 ケーブルの電気的特性に与える他の影響

1 個の水トリーや撤去された劣化ケーブルを短く切断したもの,さらに,浸水課電によって加速劣化させ水トリーを発生させたケーブルやシートは,水トリーの特性をより正確 に把握するには適切な試料と言える。しかしながら,フィールドに布設されているケーブ ルは,水トリー劣化による電気的特性以外の様々な影響を含んだ電気的特性として計測さ れることになる。

これまで、著者が経験してきた事例として、構造や材料の影響で水トリーなどの劣化による絶縁性能評価ができないことがある。特に、3.3~6.6kVのCVケーブルにおいて、交

流系診断法では劣化判定できない次に示すような例があるので、適用に際しては事前に有 効性確認が必要となる。

①導体~遮へい層間に XLPE に比べ誘電損失が大きい材料(紙,ジュート,不織布)が 介在などとして施されている 3.3kV の CV ケーブル

- 図 2.13 に示すような 3 心一括遮へい形ケーブルで,介在に紙,ジュート,不織布な どが適用されているもの(ポリプロピレン(PP)介在を除く)がある。
- 図 2.14 に示すように, 遮へい銅テープの下に紙テープや不織布テープが巻かれてい るものがある。

図 2.13 3.3kV の 3 心一括遮へい形 CV ケーブルの構造例

(a) 遮へい銅テープの下に 紙テープが巻かれている例 (b) 遮へい銅テープの下に 不織布テープが巻かれている例

図 2.14 半導電層がない 3.3kV の単心形 CV ケーブルの構造例

②接続部の電界緩和に誘電損失の大きなストレスコントロールチューブ(テープ)が施 されているもの

 図 2.15(a)に示すように、接続部の電界緩和にストレスコーンではなく、高誘電率・ 低抵抗率の材料が適用されたストレスコントロールチューブ(テープ)が施され、 誘電損失が大きくなるものがある。

(a) ストレスコントロールチューブによる電界緩和方式を採用した終端接続部

(b) ストレスコーンによる電界緩和方式を採用した終端接続部

図 2.15 電界緩和方式の違いによる終端接続部(端末部)外観の違い

- ③E-E タイプで,静電容量が大きく(大サイズ,長尺),外部半導電層~遮へい銅テープ 間の電気的特性の影響で誘電損失が増加するもの
 - 図 2.16 に示すように、ヒートサイクルによる絶縁体の膨張・収縮で、外部半導電層 と遮へい銅テープの間に隙間ができ、外部半導電層と遮へい銅テープの接触抵抗が 増加することや、接触抵抗や半導電層の抵抗が電圧依存性を示すものがあり、交流 系診断法の測定結果が悪くなるものがある。

外部半導電層の表面抵抗が大きくなるものがあり、交流系診断法の測定結果が悪くなるものがある。

また,終端接続部の劣化や汚損などによって表面抵抗低下の影響が出る場合があるので, 得られた結果の原因を明確にできるようにする配慮が必要となる。

図 2.16 ヒートサイクルで生じる外部半導電層と遮へい銅テープの隙間 によってできる直列抵抗

2.4 水トリー劣化の診断技術

CV ケーブルおよび付属品の劣化診断および特性試験法として,表 2.5 に示すように様々 な方法がある⁽²⁹⁾。また,CV ケーブルの劣化診断法には様々な方式と歴史があり⁽¹⁰⁾⁽³⁰⁾,特 に,1989年(平成元年)以降の経緯や歴史について再調査し見直したものを表 2.6 に示す。

					絶縁劣化	絶縁劣化検出原理による分類				
分	類	印加電圧	-	部分放電の発生	誘電緩和現象 の変化	絶縁抵抗の低下	直流成分・ 脈動の発生	その他		
電	オフラ	直流		部分放電測定法	残留電圧法 逆吸収電流法 残留電荷法	絶縁抵抗法 電位減衰法 <u>直流漏れ電流法</u>	_	耐電圧試験(AC/DC) AC破壊試験		
気	イン	交流						電インバルス破壊試験		
試	オンニ	重畳なし		<u>部分放電測定法</u> (AE,放射電磁界法含む)	接地線電流法 活線tan δ 法 損失電		直流成分法 脈動検出法			
	2	直	复流		_	直流重畳	法	_		
験		重畳あり 交	を流	_	<u>低周波</u>] <u>交流重畳法</u>	<u>重畳法</u>	_			
非電気的試験 外観検査,電気トリー・水			外観検査,電気トリー・水ト	リー観察,成分分析,ガ	ス分析,温度測定	_	ケーブル 移動量測定			

表 2.5 CV ケーブルの劣化診断法・特性試験法の分類⁽²⁹⁾

分 類	電圧		診断法		$\sim \! 1975 \sim$	$1980 \sim$	$1985 \sim$	1990~	$1995\sim$	$2000 \sim$	$2005\sim$
			絶縁抵抗(メガ・	一)法							
			直流漏れ電流法	直流漏れ電流法		•					
	直流		逆吸収電流(IR	C) 法] 4				2008年	以降IRC注	まとして運用開始
			残留電圧法				•				
			電位減衰法								
オフ				基本手法			●		- ••		
ラ	直流とろ	を流	残留電荷法	電荷直読式短時間昇降法					L <u> </u>		
イン				ステップ昇圧課電法							
	損失電流法(第3高調波電流)		3高調波電流)			Г		-			
			損失電流相互変調法								
	交流		誘電正接法	商用周波法							
			(tanδ法)	超低周波法							
			部分放電測定法					•		•	
			却公拚重测定注	箔電極法							
			叩刀放电阀定伍	CT法							
オ	重畳な	l	活線tanδ法				L				
ンラ			直流成分法		原理は実用	化前より存	在	+	-		
1			脈動検出法					<u> </u>			
\sim		直流	直流重畳法								
	重畳あり	 志 法	低周波重畳法								
		又而	交流重畳法						₩		

表 2.6 CV ケーブル劣化診断法の分類と歴史

- -:現場適用例が少ないか,現在現場に適用されていない診断法

3.3~6.6kV の CV ケーブルの診断技術としては,運転中に絶縁破壊を生じる可能性が高 い橋絡水トリーの検出を目的としたオフラインまたはオンライン診断法が実用化されてい る。また,11kV クラスでは水トリーが橋絡してから絶縁破壊に至るまでの時間が短くなる ので処置を急ぐ必要はあるものの,水トリーが絶縁体を橋絡してから運転中に絶縁破壊に 至ることが確認されている⁽³¹⁾ことから,6.6kV クラスの診断技術を11kV クラスにも適用 できる場合があると考えられている。

橋絡水トリーの劣化検出性能は直流漏れ電流法が最も優れていることから、オンライン 診断の結果、要注意または不良判定が得られたケーブルを対象にオフラインでの直流漏れ 電流測定による精密診断を行い、その結果を以て更新の必要性を判断するのが一般的であ る。また、停電の調整が比較的容易な設備の場合、直流漏れ電流法のみ適用されるところ もある。なお、1,000~2,000Vの直流電圧で測定する絶縁抵抗法では、橋絡水トリーを検出 できないことが多いので、絶縁抵抗測定の結果が良好であったから劣化の心配がないと判 断するのは禁物である。 それから,前節で説明したように,接続部に特殊な材料を使用しているもの,半導電層 がないものや遮へい層の施し方が異なる 3.3kV の CV ケーブル,さらに E-E タイプの CV ケーブルでは,交流系のオンライン診断法で劣化判定ができない場合があるので,対象と するケーブルへの有効性を確認した上で適用する必要がある⁽¹⁰⁾。

一方,22kV以上のCVケーブルに関しては、未橋絡状態の水トリーによる絶縁破壊事故 が大半を占めると考えられていることから、未橋絡水トリーの検出を目的としたオフライ ン診断法が実用化されている。水トリーが長い(残存絶縁厚が薄い)ものほど絶縁破壊電 圧が低下することから、水トリー長に応じた劣化信号が得られる診断法が適用されている。 従来適用されていた直流漏れ電流法は未橋絡水トリーの検出が困難であることから、ケー ブル本体ではなく接続部の絶縁診断法として適用されるところがある⁽¹⁰⁾。

なお,乾式架橋方式で製造された E-E タイプの CV ケーブルは水トリー劣化の発生・伸 展が生じにくくなっており,遮へい銅テープの破断による絶縁破壊事故の割合が増加傾向 にある。そのため,遮へい層の抵抗測定などによる遮へい銅テープの腐食・破断の検出に も目を向ける必要性が高まっている⁽¹⁰⁾。

本節では、水トリー劣化の検出を主な対象とした診断技術の調査結果について、オフラ イン診断法とオンライン診断法に分類して説明する。さらに、1988 年(昭和 63 年)頃ま では、3.3~6.6kV クラスで運転中に絶縁破壊に至る水トリーの劣化程度が明確になってい なかったが、1989 年(平成元年)以降、水トリーが絶縁体を橋絡した後に運転電圧で絶縁 破壊に至ることが明らかになり、診断装置として要求される劣化検出性能が変化してきて いる。そのため、実用化された時期を 1988 年(昭和 63 年)以前と 1989 年(平成元年)以 降で分類して説明することとする。 2.4.1 1988 年以前に実用化された診断技術

(1) オフライン診断技術

1) 絶縁抵抗 (メガー) 法

① 概要

絶縁抵抗法は、ケーブル導体~遮へい層間に 1,000~2,000V の直流高電圧を印加した時 の漏れ電流から絶縁抵抗値を算出するオフライン診断法であり、測定回路例を図 2.17 に示 す。直流電圧印加から 1 分経過後の値を読み取るとされているが、物理的根拠はなく充電 電流が減少しほぼ漏れ電流のみが流れる状態になった時(絶縁抵抗値が概ね最大となった 時)、または有効測定範囲を超過した時の絶縁抵抗値を読み取る。

1,000~2,000V メガーが一般的に使用されるが,500V 以下の低い電圧で測定可能なもの や最大 11kV までの高電圧で測定可能なものもあり,用途や目的に応じ使い分けられてい る。測定上の注意事項として次のようなものがある。

- 原則として、ケーブル端子を機器から切り離し、ケーブル単体で測定する。
- ・終端接続部表面の漏れ電流を抑制するため、表面をエチルアルコールなどで清掃する (ベンジンは水分を残してしまうので適していない)。
- 必要に応じガード電極を取り付けて測定する(一部のメガーにはガード端子がある)。
- 測定後は、必ず充電電荷を放電する(感電防止)。

図 2.17 絶縁抵抗 (メガー) 法の測定回路例⁽²⁾

2 劣化判定基準

メガーは小型軽量で操作が簡単であり、ケーブルのみならず様々な電気設備の絶縁性能 確認に適用されており、表 2.7 に示すような劣化判定基準⁽²⁾⁽³²⁾も提案されている。

測定電圧(V)	絶縁抵抗値(MΩ)	判定
1, 000 2, 000	2,000以上 500以上~2,000未満 500未満	良 要注意 不良
5, 000	5,000以上 500以上~5,000未満 500未満	良 要注意 不良
10,000	10,000以上 1,000以上~10,000未満 1,000未満	良 要注意 不良

表 2.7 3.3~6.6kV CV ケーブルの絶縁抵抗(メガー)法劣化判定基準例⁽²⁾⁽³²⁾

3 特徴および注意事項

2,000V以下の直流電圧で測定する絶縁抵抗法では、橋絡水トリーを検出できないことが 多いという実態があり、絶縁抵抗の測定結果が良好であったから劣化の心配がないと判断 するのは禁物である⁽¹⁰⁾。CVケーブルにおける 2,000V以下のメガー測定は、直流漏れ電流 測定に必要な直流高電圧印加の可否を判断するための確認(例えば、1,000Vメガーで 2,000MΩ未満の場合は、直流高電圧印加を行ってはならない)と、直流高電圧印加後のダ メージの有無を確認するために適用するものである⁽³³⁾。

2) 直流漏れ電流法

① 概要

直流漏れ電流法は,直流高電圧印加時の漏れ電流を測定するオフライン診断法であり, ケーブルの絶縁抵抗測定法の一つとして古くから適用されている。高圧 CV ケーブルの精 密診断の他,高圧以上の CV ケーブル竣工時の直流耐電圧試験として多くの実績がある。

図 2.18 に示すとおり,ケーブル導体~遮へい層間に直流高電圧を印加して,漏れ電流を 測定する。なお,劣化ケーブルでの測定中の絶縁破壊を可能な限り避けより精度の高い判 定を行うために,低い電圧から漏れ電流の値と波形を記録し,異常がなければ電圧を上昇 させるステップ昇圧方式で測定する。測定上の注意事項として次のようなものがある⁽²⁾⁽¹⁰⁾。

- 低い電圧からステップ昇圧方式で測定する(測定中の絶縁破壊抑制)。
- 異常値・異常波形が確認されたら直ちに課電を中止する(測定中の絶縁破壊抑制)。
- ケーブル端子を機器から切離しケーブル単体で測定する(どうしても切離すことができない場合はG接地方式で測定)。
- 課電用のリード線には裸線を使用しない(絶縁電線を使用する)。

- ・終端接続部の気中放電防止対策が必要となることがある(絶縁カバーやポリ袋,ラップフィルムなどを用い,空気ができるだけ入らないように導体端子部分を覆う)。
- ・終端接続部表面の漏れ電流を抑制するため、表面をエチルアルコールなどで清掃する (ベンジンは水分を残してしまうので適していない)。
- ・ 必要に応じガード電極を設けて測定する。
- 測定しないケーブル導体は安全上接地する。
- ・ 測定後は、必ず放電する(感電防止)。

図 2.18 直流漏れ電流法の測定回路例(2)

2 劣化判定基準

直流漏れ電流法では,漏れ電流の大きさ,キック現象の有無や漏れ電流の漸増または急 増現象の有無などから劣化判定を行う。漏れ電流波形の例を図 2.19 に示す⁽²⁾⁽¹⁰⁾⁽³⁴⁾。10kV までの電圧印加において,0.1µA 以上の漏れ電流が観測されることで橋絡水トリーの存在 を確認できる上に,劣化の進行に伴って生じる漏れ電流の漸増や急増現象は成極指数(成 極比)より読み取ることができ,1より小さな値になるほど劣化が進行している状態を表 す。なお,3相の漏れ電流のバラツキの程度を示す不平衡率や絶縁抵抗の電圧依存性を示 す弱点比などの指標もあるが,漏れ電流値,漏れ電流波形の異常の有無,成極指数から劣 化判定が可能である。

> 成極指数(成極比) = 電圧印加1分後の漏れ電流値 電圧印加後規定時間の漏れ電流値

また,直流漏れ電流法は古くから適用されているオフライン診断法であることから,ユ ーザー独自の劣化判定基準で運用されていることが多く,表 2.8 に示すとおり試験条件や 判定基準は,ユーザーにおける設備の重要性に応じて異なっている⁽²⁾⁽¹⁰⁾⁽³²⁾。

I:正常なケーブル Ⅱ:正常なケーブルでノイズがある場合 Ⅲ:漏れ電流の絶対値が大きい劣化ケーブル Ⅳ:漏れ電流の上昇傾向,キック現象がみられる劣化ケーブル

図 2.19 直流漏れ電流波形例⁽¹⁰⁾⁽³⁴⁾

表 2.8 6.6kV CV ケーブルの直流漏れ電流法劣化判定基準例⁽²⁾⁽¹⁰⁾⁽³²⁾

		A社	B社	C社	D社	E社	F社	G社	H社	電線工業会
最	高印加電圧(kV)	10	10	6(10年以上) 10(10年未満)	10	6	16	10	4	10
F	印加時間(分)	10	7	7	10	10	7	10	6	5~7
	良	10µA以下	3 µ A∕km未満	1 µ A未満	1 µ A以下	0.1 <i>μ</i> A未満	0.1 µ A未満	0.1 µ A以下	0.1 µ A未満	0.1 μ A未満また は1 μ A未満で 波形に異常なし
	开 '子 立	10 µ A超過	3 µ A/km以上	1 µ A以上	1µA超過	0.1µA以上	0.1 µ A以上	0.1 μ A超過	0.1 µ A以上	0.1 µ A以上で波
判	安注息	50µA以下	50 µ A/km未満	10 µ A未満	10 µ A未満	1.3 µ A未満	1 µ A未満	1µA以下	1 µ A未満	形に異常あり
定	不良	50 µ A超過	50 µ A/km以上	10 µ A以上	10 µ A以上	1.3µA以上	1µA以上	1µA超過	1µA以上	_
	キック現象有	五白	程度に応じ	西计音	五白	不良	西计音	五白	程度に応じ 要注意·不良	要注意
	漸増傾向有 (成極指数<1)		要注意·不良	安注息	个皮	-	安注息	个皮	不良	要注意
	備考		100m未満は直 読値で判定	1km以上はkm 換算値で判定						不良の区分なし 1km以上はkm換 算値で判定

3 特徴および注意事項

基本的には漏れ電流値から絶縁抵抗値を算出するメガー測定と同様の方法であるが、印 加電圧が高いことや漏れ電流の時間変化の記録を行うので、精度の高い劣化判定が可能で ある。特に、11kV以下のCVケーブルで運転中に絶縁破壊事故を起こす可能性が高い橋絡 水トリーの検出性能が優れていることから、精密診断として適用されている。逆に、未橋 絡水トリーの検出ができないため、22kV以上のCVケーブルの水トリー劣化診断には適し ていない。また、劣化が進展していると電荷が蓄積し、再課電時に局部的な高電界が発生 して絶縁破壊が生じやすくなる。そのため、課電後の適切かつ確実な放電が必要となる。 特に海外では、課電時間の4倍以上の時間をかけた放電を推奨されている⁽¹⁰⁾。 この他,交流電圧を用いる方法に比べて,大きな電源容量を必要としないため,現場適 用が容易であるという長所も持ち合わせている。

3) 水トリー劣化の空間電荷蓄積特性を利用した診断法

2.2.4 項(3)で説明したように、電圧を印加すると水トリー先端部に電荷が蓄積しやすい特性があることに基づいて、直流電圧印加後の残留電荷の放出特性を評価し劣化判定を行うオフライン診断法として逆吸収電流法、残留電圧法、電位減衰法が検討され一部で実用化されていた。

① 逆吸収電流法

図 2.20 に示す回路で,直流 100V の電圧を 5 分間印加した後 2 秒間接地し,その後の 28 秒間に流れる電流を積分して電荷量 Q の測定を行う。得られた電荷量 Q (C) を被測定ケ ーブルの静電容量 C (F) で除した値の百分率 (Q/C×100%) が大きいほど劣化が進んで いると判定するオフライン診断法であり, 3.3~6.6kV クラスに適用され 33kV クラスまで の適用拡大も検討されていた⁽³²⁾。

3.3~6.6kV クラスの判定基準も提案されていたが、22~33kV クラスでは絶縁破壊電圧 との相関が得られず、診断法としては有効ではないと評価され、適用されなくなった⁽³²⁾。 100V の直流印加電圧が低すぎたことに加え、水分量が少ない橋絡水トリーや未橋絡水ト リーでは残留電荷の放出に長時間を要すことなどが当時明確ではなかったために、28 秒と いう短時間の残留電荷の放出特性から水トリー劣化の程度を評価することに無理があった ものと考えられる。

図 2.20 逆吸収電流法の測定回路例(32)

2 残留電圧法

図 2.21 に示す回路および手順に基づき,1kV/mm×ケーブルの絶縁厚(mm)の電圧を 10 分間印加した後 10 秒間接地し,接地を開放して数分~数十分間に導体に回復してくる 電圧を高入力インピーダンス(10¹⁵Ω以上)の測定器で測定する。残留電圧が高いほど劣化 が進んでいると評価するオフライン診断法であるが,劣化程度との相関が得られないこと から判定基準も提案されておらず,現在は適用されていない⁽³²⁾。

測定順序	SW1	SW2	SW3	SW₄
直流課電	開	開	a	閉
高抵抗接地	閉	開	a	閉
完全接地	閉	閉	b	閉
残留電圧測定	閉	閉	b	開

図 2.21 残留電圧法の測定回路と手順の例(32)

③ 電位減衰法

図 2.22 に示す回路で,直流電圧を1分間印加した後回路から開放し,判定電圧までの低下時間から劣化の度合いを判定するオフライン診断法であり,3.3~6.6kV クラスに適用されていた。3.3kV クラスの場合は印加電圧 3kV/判定電圧 2.5kV,6.6kV クラスの場合は印加電圧 5kV/判定電圧 3kV である⁽³⁰⁾⁽³²⁾。判定電圧に達する時間が短いほど劣化が進んでいると判定され,橋絡水トリーの検出に有効と考えられていた⁽³⁰⁾。

しかし,運転中や直流漏れ電流測定中に絶縁破壊を起こしやすい水分量の少ない橋絡水 トリーでは,残留電荷の放出による電位減衰に時間を要し判定を誤ることがあり,直流漏 れ電流法の劣化検出性能が優れていたことなどから,現在は適用されてない。

図 2.22 電位減衰法の測定回路例と測定量の関係(30)(32)

4) 誘電正接(tanδ) 法

① 概要

CV ケーブルの XLPE 絶縁体は、一般的に図 2.23 に示すような抵抗 R と静電容量 C の並 列等価回路で表され、絶縁体に交流電圧 E を印加すると、抵抗 R に流れる損失電流 I_R と 静電容量 C に流れる充電電流 I_c の合成された電流が流れる。この時の充電電流 I_c に対す る損失電流 I_R の割合を tanδ といい、大きくなるほど誘電損失が増加し交流での絶縁性能が 低下することを意味する。

tanδ 測定は, 6.6kV 以上の CV ケーブルの完成品試験としても実施されることがあり, 図 2.24 に示すような逆ショーリングブリッジやシェーリングブリッジで測定する。なお, 最近は,ブリッジ回路の自動調整が可能となる変成器ブリッジ(図 2.25)を適用した測定 器が用いられることが多い。

また、50/60Hzの商用周波数の電圧を印加して測定するオフライン診断法であるが、抵抗 R と静電容量 C の並列等価回路で表される場合、図 2.23 の等価回路や電流のベクトル 図などからも分かるように、周波数を低くすると充電電流 I_c が小さくなるものの損失電流 I_R は変化しないので、tanδ が大きくなり劣化を検出しやすくなる傾向があること、電源容

量を小さくできることから, 22kV以上のクラスを対象に 0.1Hz 程度の交流電圧を印加する 超低周波 tanδ 法の装置開発も行われたことがある⁽³⁰⁾⁽³²⁾。

図 2.23 ケーブル絶縁体の等価回路と交流電圧印加時に流れる電流のベクトル表示

図 2.24 逆シェーリングブリッジによるケーブルの tanδ 測定回路例⁽³⁰⁾

図 2.25 変成器ブリッジによる tan δ 測定回路例

2 劣化判定基準

6.6kV 以上の CV ケーブルの完成品試験では,対地電圧相当の商用周波電圧を印加した時の tanδ の判定値を 0.1%以下とされており,これらに基づいて提案されていた判定基準を表 2.9 に示す。

判定	tanδ
良	0.1%未満
要注意	0.1%以上
不良	1%以上

表 2.9 6.6kV CV ケーブルの tanδ 法劣化判定基準例⁽³²⁾

③ 特徴および注意事項

tanδ は充電電流 Ic に対する損失電流 IR の割合を示すので、ケーブルの全体的な絶縁劣化 を検出できるという特長があるが、局部的な劣化の検出が困難である。水トリーなどによ る劣化は、ケーブルの水没箇所など局部的に発生するものがほとんどであり、tanδの測定 結果のみから判定を下すのは困難とされている。また、2.3.2 項で説明したように、使用材 料の影響などによる交流系診断法特有の問題があるので注意が必要である。

なお、橋絡水トリーが存在するようなケーブルでは、正弦波の超低周波電圧を用いることで劣化を検出しやすくなる。一方、未橋水トリーの場合は、水トリー劣化部の抵抗 R と 健全部の静電容量 C が直列に接続された等価回路で表され $tan\delta = \omega CR = 2\pi fCR$ となり、周 波数が低くなるほど $tan\delta$ が小さくなるので、超低周波電圧では未橋絡水トリーの検出が難 しくなることが分かる。したがって、正弦波電圧を用いる超低周波 $tan\delta$ 法は、 22kV 以上 のクラスを対象としているものの、未橋絡水トリーの検出が困難となることから、国内で は適用されていない。

5) 部分放電測定法

1988 年(昭和 63 年)以前に適用されていたオフライン診断法としての部分放電測定法 は、完成品試験で使用する部分放電測定システムなどを用いた診断法であり、測定システ ムをフィールドに持ち込んで測定されていた。

また,部分放電は空隙や異物の存在および劣化などの欠陥によって発生する絶縁破壊の 前駆現象として確認される現象であり,電力ケーブルにおいては,運転時の対地電圧相当 で部分放電が発生しないか,または発生電荷量が 10pC 以下とされており,高感度な部分 放電測定が必要となる。しかし,フィールドにおいてはノイズの影響により絶縁診断とし て必要な S/N 比が得られず⁽³⁵⁾,大きな部分放電が発生しないと検出が困難であったことか ら適用は一部に留まっていた。

(2) オンライン診断技術

1) 直流成分法

① 概要

直流成分法は,図 2.26 に示すような水トリーの整流作用によって交流電圧印加時に直流 成分電流が生じる特性を利用し,大きな直流成分電流が検出されるものほど劣化が進んで いると判定する 1985 年(昭和 60 年)に実用化されたオンライン診断法である。図 2.27 に 示す測定回路例のように課電用電源が不要で接地線に流れる直流成分電流を検出するだけ であるため,測定が簡便で安全性が高いということもあり,3.3~6.6kV CV ケーブルの可 搬形診断装置として最も普及していた⁽¹⁰⁾。

図 2.26 水トリーの整流作用モデル(30)

図 2.27 直流成分法の測定回路例(30)

2 劣化判定基準

表 2.10 に直流成分法の判定基準を示す。

判定	直流成分電流
良	1nA 未満
軽度要注意	1nA 以上~10nA 未満
重度要注意	10nA 以上~100nA 未満
不良	100nA 以上または波形変動が大きいもの

表 2.10 6.6kV CV ケーブルの直流成分法劣化判定基準例⁽²⁾

③ 特徴および注意事項

実用化に伴い判定基準が提案され、数多くの水トリー劣化したケーブルの更新に貢献し てきたが、1990年(平成2年)以降に実施された水トリーの直流成分電流発生機構の研究 により、交流課電下で直流成分電流が検出されるためには、水トリーが絶縁体を橋絡して いる必要がある⁽³⁶⁾こと、さらには橋絡しても直流成分電流が検出されにくい水トリーが存 在し、フィールドで判定を誤る事例が多発したなどの理由により、2000年代前半(平成10 年代中頃)に測定装置の製造販売が中止となり、他の劣化診断法への切替えが進んでいる。

2) 直流重畳法

① 概要

直流重畳法は,EVT (Earthed Voltage Transformer:接地形計器用変圧器)の1次中性点を 介して 50V の直流電圧を高圧母線に重畳し、ケーブル接地線から検出される直流電流より 絶縁抵抗を算出して劣化の度合いを判定する 1980 年(昭和 55 年)以前に実用化されたオ

図 2.28 直流重畳電流測定方式を用いる直流重畳法の測定回路例(2)(10)

図 2.29 ブリッジ回路を用いる直流重畳法の測定回路例(2)(10)

ンライン診断法で,主に 3.3~6.6kV クラスに適用されている。この測定装置には,直流重 畳電流を測定する方式とブリッジ回路で絶縁抵抗を測定する方式が適用されている⁽¹⁰⁾⁽³²⁾。 それぞれの測定回路を図 2.28 と図 2.29 に示す。

2 劣化判定基準

表 2.11 に直流重畳法の判定基準を示す。測定方式の違いにより判定値が異なっている。

判定	直流重畳電流測定法での絶縁抵抗	ブリッジ法での絶縁抵抗
良	3,000MΩ以上	10,000MΩ以上
良 (要監視)	300MΩ以上~3,000MΩ未満	3,000MΩ以上~10,000MΩ未満
要注意	30MΩ以上~300MΩ未満	1,000MΩ以上~3,000MΩ未満
重注意	30MΩ 未満	1,000MΩ 未満

表 2.11 3.3~6.6kV CV ケーブルの直流重畳法劣化判定基準例⁽²⁾⁽¹⁰⁾⁽³²⁾

③ 特徴および注意事項

工場やプラントの配電用ケーブルのオンライン診断法として,豊富な実績がある。5~ 6kVの直流電圧を印加した時の直流漏れ電流法相当の劣化検出性能があり,絶縁破壊事故 に至る前の橋絡水トリーを検出できることから,常時監視システムによる余寿命推定にも 活用されている。直流重畳電流測定法は11kVクラスへの適用も行われており,11kV CV ケーブルの橋絡水トリーによる絶縁破壊事故を未然に防いだ事例がある⁽³¹⁾。また,ブリッ ジ法は高抵抗の測定が可能で,シース絶縁抵抗低下の影響を受けにくいという特長がある。

一方, 直流電圧重畳のため EVT の1次中性点の改造が必要となる。また, 直流重畳電流 測定法では,シース絶縁抵抗が低下すると迷走電流変動の影響を受けやすくなり,ブリッ ジ法では、終端接続部の表面抵抗低下の影響を受けやすい他、ブリッジ回路の一辺に大地 抵抗が入ることから、大地抵抗の変動が大きい地域ではその影響が測定結果に表れること がある(10)。

1988 年(昭和 63 年)以前に実用化されたオンライン診断法の中で、現在でも適用され ている唯一の方法である。直流電圧の重畳が可能な系統であれば、橋絡水トリーの検出が 必要となる 11kV 以下の E-E タイプの CV ケーブルの診断法として適用できる可能性が高 いと考えられる。

2.4.2 1989 年以降に実用化された診断技術

(1) オフライン診断技術

1) 残留電荷法

① 概要

残留電荷法は,直流課電により水トリー劣化部に蓄積した電荷を一旦接地した後,交流 課電により放出される残留電荷量を測定するオフライン診断法であり、ステップ昇圧課電 法と電荷直読式短時間昇降法の2つの方式がある。

ステップ昇圧課電法は、残留電荷を放出させるための交流課電をステップ昇圧するもの で、有害性の高い長い水トリーが存在するほど、高い交流電圧で残留電荷が放出されると いう特性を利用しており、22~33kV クラスに適用されている⁽³⁷⁾。課電方法および残留電 荷の出力信号の例を図 2.30 に示す。

図 2.30 ステップ昇圧課電法による残留電荷測定例(37)

一方,電荷直読式短時間昇降法は,劣化が進んだ水トリーが存在すると交流課電時に直ちに残留電荷が放出されるという特性を利用し,交流の短時間課電を複数回繰り返した後交流の連続課電を行い,それぞれの電圧印加時に放出された電荷量に基づいて応答の速い電荷量を算出する方法で,22~77kV クラスに適用されている⁽³⁸⁾。課電方法および残留電荷の測定例を図 2.31 に示す。

図 2.31 電荷直読式短時間昇降法による残留電荷測定例(38)

2 劣化判定基準

22~33kVのCVケーブルにおける,ステップ昇圧課電法の最大電荷放出電界強度と交流 破壊電界強度の関係を図 2.32 に示す。この相関曲線を用いて推定交流破壊電界を算出し劣

図 2.32 ステップ昇圧課電法での電荷放出電界と交流破壊電界の関係(37)

化判定を行い,電気設備技術基準の定める耐電圧値程度,あるいはそれ以下を要注意と判 定している。

次に,22~33kVのCVケーブル(平均試料長10m)における,電荷直読式短時間昇降法の劣化信号(単位:nC/10m)と交流破壊電圧の関係を図2.33に示す。長尺ケーブルの劣化程度のばらつきを考慮し,近似曲線を上限値,-2σ(σ:標準偏差)の線を下限値として2~4nC/10m(破壊電圧45~80kV相当)を要注意の判定基準としている⁽³⁰⁾。

図 2.33 電荷直読式短時間昇降法での残留電荷 Q₀ と交流破壊電圧の関係⁽³⁰⁾

③ 特徴および注意事項

ステップ昇圧課電法は、どの程度の交流電圧で残留電荷が放出されたか(放出電界強度) を指標としており、局部的に極度な劣化が存在する場合にもケーブル長に依存しない適切 な診断が可能であるという特長を有する。一方、電荷直読式短時間昇降法は、劣化信号が 誤差信号に比べ交流に対する応答が速いという知見に基づき、応答の速い電荷に対応でき る測定回路を構成している。

また,残留電荷法は,直流と交流の2種類の高電圧電源が必要となるが,ステップ昇圧 課電法では,直流課電用電源の代わりに交流の半波を電荷蓄積用の電源として使用するこ とで,交流電源のみで診断可能なシステムも実用化されている。

なお,著者はステップ昇圧課電法で不良となったケーブルの調査を実施したことがあり, 乾式架橋方式で製造された 22kV CV ケーブルにおいて,全く水分の影響を受けない環境下 で 25~30 年使用され,撤去後の調査で水トリーを含む劣化が確認されなかったものを不 良と判定するケースがあったことを確認していることから,劣化検出性能についてはさら なる検証が必要と考えられる。 2) 損失電流法(第3高調波電流測定)

① 概要

損失電流法は、交流電圧印加時にケーブル絶縁体に流れる電流から印加電圧に対して 90°位相が進んだ充電電流を差し引いた後の損失電流を測定し、その中に含まれる高調波 電流を用いてケーブル絶縁体の水トリー劣化を評価するオフライン診断法であり、主に66 ~77kV クラスに適用されている。図 2.34 に示すような tanδ 測定と同様のブリッジ回路を 用い、損失電流中に含まれる高調波電流を測定する。

図 2.34 損失電流法の測定回路例(30)

損失電流法には、水トリーの伸展に伴い特に第3高調波電流が重畳する特性を利用し、 商用周波電圧を印加して第3高調波電流の大きさや重畳位相を指標として劣化判定を行う 商用周波損失電流法⁽³⁹⁾と、高圧固定リアクトルとケーブルとの直列共振周波数の交流電圧 を印加し、第3高調波電流の電圧依存性と対地電圧印加時の第3高調波電流の大きさから 劣化判定を行う可変周波損失電流法がある⁽⁴⁰⁾。なお、いずれの方法も課電側で電流を測定 するため、多点接地ケーブルへの適用が可能である。

2 劣化判定基準

商用周波損失電流法では、図 2.35 に示すように、交流電圧を印加すると水トリーの伸展 に伴って損失電流の歪が大きくなる。この時、第3高調波電流 I₃が大きくなり、さらに印 加電圧に対する第3高調波電流の重畳位相 θ₃がマイナス側から0度に近付いていく特性が 確認されている⁽³⁹⁾。図 2.36 において、第3高調波電流が大きく、重畳位相が0度に近いほ ど劣化が進んでいるという判定となり、判定ラインの右上にプロットされると不良判定と なる。

一方,可変周波損失電流法では,損失電流中の第3高調波成分の印加電圧依存性が図2.37 に示すパターンに大別されることを利用し,印加電圧に対する第3高調波電流の増加割合 (傾き) m と,対地電圧における第3高調波電流 I₃を指標として,図2.38に示すフローに 従い劣化判定を行う⁽⁴⁰⁾。

図 2.35 水トリー劣化状況と商用周波電圧を印加した時の損失電流波形例(39)

図 2.36 商用周波損失電流法における第 3 高調波電流 I₃ と重畳位相 θ₃の関係から見る 判定ライン⁽³⁹⁾

印加電圧 V

図 2.37 CV ケーブルに流れる第3 高調波電流の印加電圧依存性(40)

図 2.38 可変周波損失電流法による劣化判定フロー(40)

③ 特徴および注意事項

いずれの損失電流法も水トリー劣化特有の非線形抵抗特性により発生する高調波電流 を測定するため、66~77kVのCVケーブルで検出が必要となる未橋絡水トリーの信号を検 出できるという特長を有する。

一方,商用周波損失電流法では,湿式架橋方式で製造されたものは絶縁体中の水分量が 多いため,水トリー以外の部分からの高調波電流発生が判定に影響を及ぼすということで, 湿式架橋方式で製造された CV ケーブルには適用できないとされている⁽¹⁰⁾。

なお,著者は66kVCVケーブルの調査を実施したことがあり,水トリーの発生がなくて も絶縁体中の水分増加によって,高調波電流が大きくなることや重畳位相がマイナス位相 (進み位相)から0度に近付いていく特性があることを確認している。また,フィールド に布設されているケーブルはシート試料で水トリーを一様に発生させた場合とは異なり, 発生した水トリー長が一様なものがほとんどなく,水トリー長に応じた重畳位相が得られ ないことが多いため,破壊電圧との相関が得られにくいのではないかと考えられる。

3) 損失電流相互変調法

損失電流法は、交流電圧印加時にケーブル絶縁体に流れる損失電流に含まれる高調波電流を用いてケーブル絶縁体の水トリー劣化を評価する診断法であるが、この高調波電流の 発生は水トリー劣化部がオーム則には従わない非線形な電圧-電流特性に起因しているこ とが明らかとなっている⁽¹⁷⁾⁻⁽²¹⁾。

水トリー劣化部の空間電荷の減衰特性がイオン性伝導のモデルで説明できる⁽⁴¹⁾ことな どから、非線形抵抗の電圧-電流特性は、電圧 V の1 乗の項と3 乗の項で近似できるとさ れている⁽⁴²⁾。ここで、電圧の1 乗に依存するコンダクタンスを G_1 、3 乗に依存するコンダ クタンスを G_3 とすると、損失電流 I_R は(2.1)式で表される。 G_1 に対する G_3 の割合が大 きくなると抵抗の非線形の程度が大きくなることを示している。

$$I_R = G_1 V + G_3 V^3$$
 (2.1)

この非線形抵抗特性を示す絶縁体に(2.2)式に示す2つ周波数($\omega_a = 2\pi f_a, \omega_b = 2\pi f_b$)成 分を持った交流電圧 V を印加すると、流れる損失電流 I_R は(2.3)式で表される。

$V = A \sin \omega_a t + B \sin \omega_b t$	•••••	(2.2)
$I_{R} = G_{1}(A \sin \omega_{a}t + B \sin \omega_{b}t) + G_{3}(A \sin \omega_{a}t + B \sin \omega_{b}t)^{3}$		(2.3)

この(2.3)式を計算し周波数成分で整理すると(2.4)式が得られ、それぞれの印加電圧の周波数に対する基本波成分と第3高調波成分以外に、変調作用によって2ωa±ωbと2ωb±ωaの周波数成分の電流が生じることが分かる。

$$I_{R} = \left(AG_{1} + \frac{3}{4}A^{3}G_{3} + \frac{3}{2}AB^{2}G_{3}\right)\sin(\omega_{a}t) + \left(BG_{1} + \frac{3}{4}B^{3}G_{3} + \frac{3}{2}A^{2}BG_{3}\right)\sin(\omega_{b}t) - \frac{3}{4}A^{2}BG_{3}[\sin(2\omega_{a} + \omega_{b})t - \sin(2\omega_{a} - \omega_{b})t] - \frac{3}{4}AB^{2}G_{3}[\sin(2\omega_{b} + \omega_{a})t + \sin(2\omega_{b} - \omega_{a})t] - \frac{1}{4}A^{3}\sin(3\omega_{a}t) - \frac{1}{4}B^{3}\sin(3\omega_{b}t)$$
 (2.4)

この水トリーの非線形抵抗特性に基づく変調周波数成分(2ω_a+ω_b)の信号を利用したものが損失電流相互変調法であり、22kV以上のクラスのオフライン診断法として開発されたものである⁽⁴²⁾。

損失電流測定に使用されるブリッジ回路に異なる 2 つの周波数の電圧を出力可能な電源 を直列に接続した図 2.39 に示す回路で測定される。22kV CV ケーブルの場合は、商用周波 数 50Hz (= ω_a)の印加電圧は対地電圧の 50%の 6.4kV とし、100Hz (= ω_b)の重畳電圧を 対地電圧の 0~15%まで変化させた時の 200Hz (= $2\omega_a + \omega_b$)の変調電流の大きさや電圧依 存性などから判定される。200Hz の変調電流の重畳電圧依存性を図 2.40 に示す。

なお,損失電流相互変調法は,1997年(平成9年)頃先行して実用化されたオンライン 診断法である交流重畳法と同様の周波数変調作用を利用した診断法であることから,交流 重畳法との相違点についての議論もなされたが,フィールドへの適用は少ないかほとんど 行われていないものと考えられる。

図 2.39 損失電流相互変調法の測定回路例⁽⁴²⁾

図 2.40 水トリー劣化したケーブルの変調電流の重畳電圧依存性(42)

4) 逆吸収電流(IRC: Isothermal Relaxation Current)法

① 概要

1988年(昭和63年)以前に,電圧を印加すると水トリー先端部に電荷が蓄積しやすい 特性があることに基づいて,直流電圧印加後の残留電荷の放出特性を評価し劣化判定を行 うオフライン診断法として逆吸収電流法が検討され一部で実用化されていた。しかしなが ら,100Vの直流印加電圧が低すぎたことに加え,水分量が少ない橋絡水トリーや未橋絡水 トリーでは残留電荷の放出に長時間を要すことなどが当時明確ではなかったために,28秒 という短時間の残留電荷の放出特性から水トリー劣化の程度を評価することに無理があっ たことなどから,適用されなくなっていた⁽³⁰⁾⁽³²⁾。

その後海外において、印加電圧、信号処理、分析時間や分析方法の改良がなされ IRC 法 として実用化され、国内の一部で適用されるようになっている⁽⁴³⁾⁽⁴⁴⁾。

IRC 法は、500~1,000V の直流電圧を 30 分印加し、5 秒間放電した後の 30 分間の残留電荷の放出特性をパラメータ化して、劣化の度合いを判定するオフライン診断法であり、現在 3.3~22kV のクラスで実績が積み上げられている⁽⁴³⁾。測定回路を図 2.41 に示す。

図 2.41 IRC 法の測定回路例⁽⁴⁴⁾

② 特徴および注意事項

1,000V以下の直流電圧印加で診断できるため、劣化ケーブルに対してダメージを与える 心配が少ないという特長を有している。なお、橋絡水トリーが存在すると判定を誤ること があるので、11kV以下のクラスへの適用には注意が必要であるが、未橋絡水トリーの検出 に有効とされている⁽⁴³⁾ことから、22kV以上の CV ケーブルの診断コスト低減につながる ものと期待されていた。

しかし,測定装置の製造販売を行っていた海外メーカーが,製造販売中止の決定を行ったことから,今後の適用拡大が困難な状況となっている。

(2) オンライン診断技術

1) 活線 tanδ 法

① 概要

活線 tanδ 法は, CV ケーブルの絶縁性能試験やオフライン診断法として適用されていた 誘電正接法を 3.3~6.6kV のオンライン診断に適用できるようにしたもので, 1989 年 (平成 元年)頃実用化された⁽¹⁰⁾⁽³⁰⁾。

オンラインでの tanδ 測定は,図 2.42 に示すように,抵抗分圧器を高圧母線に活線接続し て電圧信号を取り込むか,または EVT の 2 次側から位相補正した電圧信号を取り込み,変 流器 (CT) をケーブル接地線に取り付けて接地線に流れる電流を検出し,算出した tanδ の 大きさから劣化の度合いを判定する⁽¹⁰⁾⁽³⁰⁾。

図 2.42 活線 tanδ 法の測定回路例⁽³⁰⁾

2 劣化判定基準

表 2.12 に活線 tanδ 法の判定基準を示す。

判定	tanð
良	0.5%未満
要注意	0.5%以上
不良	5%以上

表 2.12 3.3~6.6kV CV ケーブルの活線 tanδ 法劣化判定基準例⁽²⁾
③ 特徴および注意事項

基本的にはオフライン診断法と同様であり, tanδ は充電電流 Ic に対する損失電流 IR の割 合を示すので,ケーブルの全体的な絶縁劣化を検出できるという特長があるが,オフライ ン診断法に比べ判定基準が甘く設定されているので,局部的な劣化の検出がさらに難しく なっている。水トリーなどによる劣化は,ケーブルの水没箇所など局部的に発生するもの がほとんどであり, tanδ の測定結果のみから判定を下すのは困難とされているので,他の 直流系診断法と組み合わせて複合判定される場合がある。また,2.3.2 項で説明したように, 使用材料の影響などによる交流系診断法特有の問題があり,3 心一括形 CV ケーブルや外 部半導電層のない単心形やトリプレックス形の 3.3kV CV ケーブルに適用できない⁽¹⁰⁾こと などがある。最近では,これらの理由などにより適用事例が報告されなくなっている。

2) 低周波重畳法

① 概要

低周波重畳法は,局部的な劣化を検出できる直流系診断法の特長と全体的な劣化を検出 できる交流系診断法の特長を併せ持ち,両者の欠点を補うような診断法を目指し開発され, 1990年(平成2年)に実用化されたオンライン診断法である⁽⁴⁵⁾。

7.5Hz-20V の低周波電圧を高圧母線に重畳して、ケーブル接地線から低周波成分の損失 電流を分離検出し、交流絶縁抵抗を算出して劣化の度合いを判定するオンライン診断法で あり、主に 6.6kV に適用されている⁽¹⁰⁾⁽³²⁾。測定回路を図 2.43 に示す。

図 2.43 低周波重畳法の測定回路例(10)

2 劣化判定基準

表 2.13 に低周波重畳法の判定基準を示す。

判定	交流絶縁抵抗
良	1,000MΩ 超過
要注意	400MΩ 超過~1,000MΩ 以下
不良	400MΩ以下

表 2.13 3.3~6.6kV CV ケーブルの低周波重畳法劣化判定基準例(10)(32)(45)

3 特徴および注意事項

測定結果と交流破壊電圧の相関が高く,損失電流の増加を伴う各種の劣化検出が可能で あり,シース絶縁抵抗低下や終端接続部の表面抵抗低下の影響を受けにくいという特長が ある。

一方,接続部の電界緩和に絶縁体に比べ高誘電率・低抵抗率の材料を用いたストレスコントロールチューブなどが施されているものや,3.3kVの3心一括遮へい形のCVケーブルでは,劣化判定ができない場合があること,低周波電圧重畳のため活線接続が必要となる欠点がある⁽¹⁰⁾。

また, E-E タイプでも,外部半導電層の抵抗や外部半導電層と金属遮へい層の接触抵抗 に非線形な特性が表れ,低周波重畳法によるオンライン測定の結果では劣化判定ができな い場合がある。そのため,オフラインで交流絶縁抵抗または低周波損失電流の電圧依存性 を評価⁽⁴⁶⁾⁽⁴⁷⁾することにより,水トリー劣化の可能性を推定する方法が一部で適用されてい る⁽¹⁰⁾⁽³³⁾。

3) 脈動検出法

① 概要

脈動検出法は,負荷変動によるフリッカやノイズなどとして商用電源に含まれる低周波成分(脈動成分)を信号源とするオンライン診断法である⁽³²⁾。水トリー劣化の伸展に伴い増加する 1Hz の脈動電流の大きさから劣化の度合いを判定する診断法で,3.3~6.6kV 用として 1994 年(平成6年)に実用化された⁽⁴⁸⁾。

図 2.44 に示すように、ケーブル接地線に端子箱を接続し、接地線に流れる電流の中から 1Hz の脈動電流を分離検出し、変動する脈動電流の最低値の大きさから劣化の度合いを判 定する⁽³⁰⁾⁽³²⁾。 直流成分法の測定装置とほぼ同様の構成となっており、ローパスフィルタを介した直流 成分電流の測定回路から、1Hz のバンドパスフィルタを介した脈動電流の測定回路に変更 したものである。

図 2.44 脈動検出法の測定回路例(30)

2 劣化判定基準

表 2.14 に脈動検出法の判定基準を示す。

表 2.14 3.3~6.6kV CV ケーブルの脈動検出法劣化判定基準例(32)

判定	シース絶縁抵抗	脈動電流
良		0.05nA 以下
要注意	1MΩ以上	0.05nA 超過~0.2nA 未満
不良		0.2nA 以上
判定不能	1100 去港	
(シース絶縁抵抗要注意)	1111127个间	_

③ 特徴および注意事項

課電用電源が不要で充電部に触れずに測定できるため、安全かつ簡便であるという特長 を有する。しかし、シース絶縁抵抗低下の影響を受けやすく、絶縁体のみの劣化判定が困 難な場合が多いことと、信号源となる商用電源の脈動成分は不安定なため、測定結果の再 現性が得られないことが多かったことなどから、適用例が少なく、現在は測定装置の製造 販売が中止となっている⁽¹⁰⁾。 4) 交流重畳法

① 概要

交流重畳法は、交流電圧が印加された水トリー劣化したケーブルに、遮へい層の接地線から商用周波数の2倍+1Hz (101Hz または 121Hz)の交流電圧を重畳すると、1Hz の劣化信号が発生するという原理を利用し、ケーブル接地線から交流電圧を重畳して、そこに流れる1Hz の劣化信号を検出し劣化の度合いを判定するオンライン診断法であり、6.6kV に適用されている⁽¹⁰⁾⁽³²⁾。測定回路を図 2.45 に示す。

図 2.45 交流重畳法の測定回路例⁽¹⁰⁾

直流成分法が簡単かつ安全に測定できること、電圧を重畳することで劣化信号が増幅で きること、水トリーが有する非線形抵抗特性による信号の周波数変調作用によって新たな 信号が発生する可能性があることなどに基づき、直流成分測定装置を用いて高圧側や接地 側から様々な電圧を重畳した時の特性を調査された。その結果、1Hz の変調信号が劣化信 号として得られることを見出されたのが交流重畳法であり、最も新しいオンライン診断法 である^{(49) (50)}。交流重畳法における水トリーによる 1Hz の劣化信号は、2.4.2 項(1)3)の損失 電流相互変調法で説明した水トリーの非線形抵抗特性に基づく変調作用によるもので、同 じ(2.4) 式で示される 2 $\omega_a-\omega_b$ ($\omega_a=50/60$ Hz, $\omega_b=101/121$ Hz)の周波数成分である⁽⁵¹⁾。

この方法も直流成分法の測定装置とほぼ同様の構成となっており、ローパスフィルタを 介した直流成分電流の測定回路から、1Hz のバンドパスフィルタを介した電流の測定回路 に変更し、さらに 101/121Hz で 50V の電圧を重畳可能な電源を信号検出用のインピーダ ンスに直列に接続したものとなっている⁽³⁰⁾⁽³²⁾。1997 年(平成9年)に実用化され、当初は 商用周波数の変動に伴う 1Hz の劣化信号の変動が判定に影響を及ぼすことがあった。その 後、検出する電流信号を FFT 解析し、1Hz を中心周波数とする帯域で劣化信号の大きさを 評価して判定するように改良されている。 また, 直流成分法の測定装置に近い構成で水トリー劣化の検出性能が高いことから, 直 流成分法の測定装置の販売中止に伴い, 交流重畳法の測定装置への置き換えが進んでいる。

2 劣化判定基準

表 2.15 に交流重畳法の判定基準を示す。

判定	交流重畳電流
良	10nA 未満
不良	10nA 以上

表 2.15 6.6kV CV ケーブルの交流重畳法劣化判定基準例⁽¹⁰⁾⁽³²⁾

3 特徴および注意事項

充電部に触れずに測定できるため,安全かつ簡便であり,水トリー劣化の検出性能が高く,シース絶縁抵抗低下や終端接続部の表面抵抗低下の影響を受けにくいという特長がある⁽¹⁰⁾。6.6kV CV ケーブルのオンライン診断法としては最も新しい方法であるが,主に電力 会社の配電用ケーブルのオンライン診断法として広く適用されるようになっている。

一方,劣化信号の発生原理からも分かるように水トリー特有の非線形抵抗特性を利用した方法であるため,水トリー劣化以外の劣化検出には適用できない他,接続部の電界緩和に絶縁体に比べ高誘電率・低抵抗率の材料を用いたストレスコントロールチューブなどが施されているものや,3.3kVの3心一括遮へい形のCVケーブルでは,劣化判定ができない場合がある⁽¹⁰⁾⁽³³⁾。また,E-Eタイプでも,外部半導電層の抵抗や外部半導電層と金属遮へい層の接触抵抗に非線形な特性が表れ,劣化判定ができない場合がある⁽¹⁰⁾⁽³³⁾。

5) 部分放電測定法

① 概要

フィールドでの部分放電測定は、ノイズとの弁別の難しさから絶縁診断として必要な S/N 比が得られず適用が困難であったが、測定技術の向上により 1991 年(平成 3 年)頃に 箔電極法による測定法⁽³⁵⁾が、2001 年(平成 13 年)頃に高周波 CT を用いた測定法⁽⁵²⁾が実 用化された。3.3kV 以上の CV ケーブル(接続部を含む)や 66kV 以上の OF ケーブル(主 に接続部)の異常箇所より発生する部分放電を検出するオンライン診断法として適用され ている⁽⁴⁴⁾。

超高圧ケーブルの部分放電測定では図 2.46 に示す箔電極法⁽³⁵⁾が用いられているが,近年の測定技術の向上に伴い図 2.47 に示すような高周波 CT⁽⁵²⁾⁽⁵³⁾や高周波アンテナを用いた測

定法が実用化され, 3.3kV 以上のケーブルのオンライン診断法として適用が拡大している (10)(33)。

図 2.46 箔電極法による部分放電測定例(35)

(a) 超高圧ケーブルでの測定例⁽⁵²⁾
 (b) 高圧ケーブルでの測定システム構成例⁽⁵³⁾
 図 2.47 高周波 CT による部分放電測定例

② 特徴および注意事項

部分放電の発生を伴わない水トリー劣化の発生・伸展過程での検出は困難であるが、水 トリー劣化部で部分放電が発生し電気トリーが発生・伸展する状態になると検出できるよ うになる。なお、11kV以下のCVケーブルでは、水トリーが絶縁体を橋絡しても直ちに絶 縁破壊に至らないが、部分放電の発生により電気トリーが発生・伸展し橋絡すると絶縁破 壊となる。部分放電の発生は、絶縁破壊の前駆現象ではあるものの絶縁破壊に至るまでの 過程や時間が不明であることから、危険な状態と考える必要がある。そのため、部分放電 の発生が確認された場合には処置を急ぐ必要がある⁽³³⁾。

2.5 結言

本章では、水トリーの構造および発生・伸展と電気的特性について調査・分析した結果 を紹介し、水トリー劣化したケーブルのトラブルや劣化信号に及ぼす劣化以外の電気的特 性の影響を調査し整理した。そして、水トリー劣化の検出を目的とした各診断技術の調査 を行い、その歴史と各診断技術の概要についてまとめを行った。

結晶性高分子であるポリエチレン(PE)を架橋した XLPE 絶縁体で発生する水トリーは, ラメラや球晶すなわち結晶の界面にボイドが存在または生成し,そのボイド間がパスでつ ながることで水トリーとして成長していく。水トリーの発生には,電界の集中と水分の供 給が必要であり,この2つの要因の対策を講じることで水トリーの発生を抑制することが できる。また,水トリーの発生・伸展に影響を与える要因として,①電圧,②周波数,③ 課電時間,④温度,⑤水分量,⑥水質,⑦溶媒,⑧発生核,⑨高分子材料の材質などがあ げられており,XLPE 絶縁体の熱膨張率が大きくなりヤング率と硬度が低下する 70℃付近 で水トリーの伸展が大きくなることが確認されている。また,新しい知見として,さらに 乾湿のサイクルを加えることで水トリー長が飽和せずに伸展する可能性があることを示し た。

つづいて,水トリーは非線形抵抗特性を示し,直流電圧では絶縁体を橋絡するかしない かで漏れ電流の大きさが大きく異なる。一方,交流電圧では未橋絡状態でも健全部(残存 の絶縁体)が静電容量となり,この部分に流れる充電電流が水トリー劣化部に流れること により,高調波成分を含んだ損失電流が発生する。さらに,空間電荷の測定により水トリ ーの先端部に電荷が蓄積されやすいことが確認され,この残留電荷を評価することによっ て水トリー劣化を検出できる可能性があることが分かった。

実際に布設されている運転中の CV ケーブルでは、11kV 以下においては水トリーが絶縁 体を橋絡した後に絶縁破壊に至り、22kV 以上では未橋絡状態で絶縁破壊に至ると考える 必要があることから、運転中の絶縁破壊事故を防止するためには、11kV 以下は橋絡水トリ ー、22kV 以上は未橋絡水トリーの検出が必要となる。なお、著者のこれまでの経験から、 実際に水トリー劣化したケーブルにおいても、構造や使用材料の影響などで劣化判定が困 難になる交流系診断法があるので、事前に有効性の確認が必要となることを示した。

そして最後に、水トリー劣化の検出を目的とした診断技術の分類と歴史の再調査結果を 一覧表にまとめ、1988年(昭和63年)以前と1989年(平成元年)以降に実用化された診 断技術をオフライン診断法とオンライン診断法に分け、著者が経験したことや入手した情 報を加えて概要を解説した。その整理した情報から、1988年(昭和63年)以前に検討さ れていた逆吸収電流法などの診断法が国内で適用不可となってから20年ほど経過し、同 様の診断法で測定方法や信号の処理方法を工夫した海外製の測定装置が実用化されている ことが分かった。本論文では取り扱っていないが、他にも超低周波 tanδ法、可変周波交流 電圧や減衰振動波電圧(DAC),超低周波電圧(VLF)を用いた部分放電測定法の海外製測 定装置が販売されている。水トリー劣化したケーブルの特性は,橋絡水トリーの有無で大 きく異なることから,電圧階級で区別したり,橋絡水トリーと未橋絡水トリーを区別した りした診断法または判定方法を検討されていれば,現在適用されている診断法が異なって いた可能性は否定できない。

なお、現状の診断技術を総括すると、3.3~11kV ではオフライン診断法である直流漏れ 電流法の劣化検出性能が最も優れているが、オンライン診断法では交流系診断法の E-E タ イプへの適用において課題があるので、橋絡水トリーを検出できる直流重畳法の適用が推 奨される。しかしながら、直流重畳法の適用が困難な系統もあるので、E-E タイプのオン ライン診断技術の確立は今後の課題として残る。また、22kV 以上では、未橋絡水トリーを 検出できる診断技術の適用が必要であり、診断コストの低減と信頼性の向上が今後の課題 である。

- (1) 福田正:「架橋ポリエチレンケーブルの水トリー」, 電気学会雑誌, Vol.94, No.9 (1974)
- (2) 日本電線工業会:「高圧 CV ケーブルの保守・点検指針」,技術資料,技資第116号D
 (2012)
- (3) 電気学会・トリーイング劣化基礎過程調査専門委員会:「高分子絶縁材料におけるト リーイング劣化の基礎課程」,電気学会技術報告,第674号(1998)
- (4) 岡田正和: 「分子性結晶-直鎖状分子の結晶多形-」,幸書房(1975)
- (5) 電気学会・トリーイング劣化機構と高分子高次構造の影響調査専門委員会:「トリー イング劣化機構と高分子高次構造の影響」,電気学会技術報告,第 854 号(2002)
- (6) 杣謙一郎:「架橋ポリエチレン絶縁電力ケーブルの長期信頼性向上技術に関する研究」,九州大学博士論文(1992)
- (7) 電気学会・絶縁材料耐電界性常置専門委員会:「有機絶縁材料における水トリーについて」,電気学会技術報告(I部),第111号(1974)
- (8) K. Kojima, M. Tsumoto, K. Kanazawa, K. Hosokawa, B. Yoda, R. Kaneko : "Technical Progress of HV and EHV Cross-linked Polyethylene Insulated Cables in Japan", CIGRE, 21-01 (1976)
- (9) T. Mizukami, K. Takahashi, C. Ikeda, N. Kato, and B. Yoda : "Insulation Properties of Crosslinked Polyethylene Cables Cured in Inert Gas", IEEE Trans. Power Apparatus and Systems, PAS-94, 2, 467~472 (1975)
- (10)電気学会・技術伝承を目的とした電力設備の絶縁診断技術調査専門委員会:「電力機 器・設備の絶縁診断技術」,オーム社(2015)
- (11)速水敏幸:「CV ケーブル」, コロナ社 (1986)
- (12)蒲原弘昭:「ケーブルの絶縁診断技術」, OHM, Vol.104, No.8, pp.35-40 (2017)
- (13)栗原隆史・三坂英樹・髙橋俊裕・髙橋紹大:「CV ケーブルにおける人工水トリー劣 化手法の検討(その2) –加熱・ヒートサイクルによる水トリー伸展手法の提案–」, 電気学会論文誌 A, Vol.141, No.1, pp.76-84 (2021)
- (14)速水敏幸:「高圧 CV ケーブルの直流漏れ電流を中心とした絶縁劣化診断法」,電気学 会誘電・絶縁材料研究会資料,DEI-91-20(1991)
- (15)武藤秀二・山下泰浩・丸山義雄:「劣化ケーブルの漏れ電流特性」,電気学会誘電・絶縁材料研究会資料,DEI-91-19 (1991)
- (16)篠田千春・堀田昌弘・橋詰俊成・谷恒夫:「CV ケーブルの電気特性に及ぼす水トリーの影響(水分の効果)」,矢崎技術リポート, Vol.18, No.2 (1993)
- (17)熊澤孝夫・杉山真一・堀田昌弘・橋詰俊成・谷恒夫:「水トリーの等価回路検討」,電 気学会放電・誘電・絶縁材料合同研究会資料, ED-97-57/DEI-97-58 (1997)
- (18)坂本中・井上修和・堺繁夫・中川雅喜:「水トリー劣化 CV ケーブルの交流誘電特性 の検討(tanδの電圧特性と温度特性)」,平成4年電気学会全国大会講演論文集, No.1426(1992)
- (19)電気学会・特別高圧 CV ケーブル絶縁診断技術調査専門委員会:「特別高圧 CV ケーブル絶縁劣化形態と絶縁診断技術の動向」,電気学会技術報告,第668 号(1998)

- (20)坂本中・中川雅喜・井上修和:「水トリー劣化 CV ケーブルの交流損失電流の電圧特 性」, 平成4年電気学会電力・エネルギー部門大会講演論文集, No.327 (1992)
- (21)八木幸弘・田中秀郎・一柳直隆:「水トリー劣化過程における損失電流高調波成分の 発生と推移」,平成9年電気学会全国大会講演論文集,No.1855(1997)
- (22)高田達雄:「空間電荷計測技術の最前線(解説)」, 電気学会論文誌 A, Vol.117, No.6, pp.545-551 (1997)
- (23)李英・川井二郎・海老沼康光・藤原靖隆・相原貢・大木義路:「水トリー劣化した架橋ポリエチレンにおける空間電荷の挙動」,電気学会論文誌 A, Vol.116, No.9, pp.818-824 (1996)
- (24)武藤秀二・丸山義雄:「水トリーの有害性について」, 電気学会誘電・絶縁材料研究会 資料, DEI-93-118 (1993)
- (25)田中成憲・中川渡・佐野健二・内海将次:「ボウ・タイ状水トリーの有害性の検討」, タツタ電線技報, No.12 (1992)
- (26)橋詰俊成・篠田千春・中村和成・堀田昌弘・谷恒夫:「浸水課電下における乾式架橋 ポリエチレンケーブルの残存破壊電圧特性に及ぼすボウ・タイ状水トリーの影響」, 電気学会論文誌 A, Vol.114, No.3, pp.258-266 (1994)
- (27)坂口義則・林泰利:「22kV 級 CV ケーブルの使用電圧で破壊する水トリー長」,平成8 年電気学会全国大会講演論文集,No.1679(1996)
- (28)高橋俊裕・栗原隆史・足立和郎:「22kV 撤去 CV ケーブルの絶縁破壊前駆遮断試験と 橋絡水トリーの発見」,平成 30 年電気学会電力・エネルギー部門大会講演論文集, No.334 (2018)
- (29)海老沼康光・藤原靖隆・相原貢:「ケーブル絶縁劣化診断技術の現状」,電気学会電線・ケーブル研究会資料, EC-90-23 (1990)
- (30)電気学会・配電線地中化の技術動向と課題調査専門委員会:「配電線地中化の技術動 向と課題」,電気学会技術報告,第1107号(2008)
- (31)江藤計介・小宮満明・志水善国:「直流重畳法による 11kV 劣化ケーブルの検出」,平成28 年電気学会全国大会講演論文集, No.2-015 (2016)
- (32)電気学会・絶縁材料の劣化と機器・ケーブルの絶縁劣化判定調査専門委員会:「絶縁 材料の劣化と機器・ケーブルの絶縁劣化判定の実態」,電気学会技術報告,第752号 (2000)
- (33)蒲原弘昭:「特高・高圧ケーブルの保守・点検の実務に適用できる技術」, OHM, Vol.105, No.7, pp.6-10 (2018)
- (34)電気学会・地中配電用ケーブルの信頼性向上調査専門委員会:「地中配電ケーブルの 信頼性向上技術」,電気学会技術報告(Ⅱ部),第404号(1992)
- (35)勝田銀造・戸谷敦・遠藤桓・鈴木弘・関井康雄:「超高圧長尺 CV ケーブル線路の活線部分放電検出法の開発」,電気学会論文誌 B, Vol.111, No.11, pp.1223-1232 (1991)
- (36)例えば,熊澤孝夫・錦見淳一・有馬泉・渡邉貞司・高木伸之:「直流成分電流の発生 機構に基づいた活線劣化診断法の有効性に関する検討」,電気学会論文誌 B, Vol.116, No.1, pp.114-119 (1996)
- (37)宮島和久・今博之・渡辺和夫・内田克己:「新規残留電荷法による CV ケーブルの水 トリー劣化診断」,電気学会論文誌 B, Vol.125, No.2, pp.199-205 (2005)

- (38)大高巖・青木勝・冨樫浩孝・辻本富幸・中出雅彦:「短時間電圧昇降を用いた直読式 残留電荷法による CV ケーブルの水トリー劣化診断」,電気学会論文誌 B, Vol.126, No.4, pp.452-459 (2006)
- (39)八木幸弘・足立潔美・田中秀郎・辻本富幸・中出雅彦:「損失電流高調波成分による CV ケーブル劣化診断法の実用化」,電気学会誘電・絶縁材料/電線・ケーブル合同研究 会資料,DEI-03-28/EC-03-04 (2003)
- (40)鈴木弘・中浦美輝・西田幸香・嘉屋健:「可変周波損失電流法による CV ケーブル線 路の劣化診断」,平成 26 年電気学会全国大会講演論文集,No.7-131 (2014)
- (41) 穂積直裕・岡本達希・池田易行:「水トリー劣化した架橋ポリエチレンケーブル絶縁 体中の空間電荷挙動」,電気学会論文誌 A, Vol.115, No.5, pp.411-417 (1995)
- (42)八木幸弘・田中秀郎・武藤秀二・木村人司:「損失電流高調波成分による CV ケーブ ル劣化診断法の検討」,電気学会論文誌 B, Vol.119, No.4, pp.438-444 (1999)
- (43)末長清佳・榊原崇志:「IRC 法による電力ケーブル診断技術の現場適用(診断実績の 整理と課題の抽出)」,平成29年電気学会電力・エネルギー部門大会講演論文集, No.42 (2017)
- (44)電気学会・最新の実用材料を使用した電力機器における絶縁診断技術調査専門委員会:「電力機器・設備において実用化されている絶縁材料と最新の診断技術」,電気学会技術報告,第1504号(2021)
- (45)上島征行・中西公男:「低周波重畳法による CV ケーブル活線劣化診断装置」, OHM, Vol.77, No.5, pp.49-55 (1990)
- (46)蒲原弘昭・工藤善則・篠原功・伊藤彰:「低周波電圧を用いた 6kV 級 CV ケーブルの 絶縁診断における水トリー劣化検出性能」,電気学会論文誌 A, Vol.119, No.6, pp.814-820 (1999)
- (47) 蒲原弘昭・工藤善則・江原由泰:「水トリー劣化した CV ケーブルに流れる電流の直 流電圧および交流電圧特性」,電気学会論文誌 A, Vol.138, No.9, pp.463-470 (2018)
- (48)三菱電線工業:「高圧 CV ケーブル活線絶縁診断装置」,三菱電線工業技術資料,TRK-95389 (1995)
- (49)熊澤孝夫・堀田昌弘・橋詰俊成・谷恒夫:「新しい活線劣化診断法の開発」,平成8年 電気学会全国大会講演論文集,No.1685(1996)
- (50)熊澤孝夫・堀田昌弘・杉山真一・橋詰俊成・谷恒夫:「6kV 級 CV ケーブルの新しい 活線劣化診断法(交流重畳法)」,電気学会論文誌 B, Vol.117, No.12, pp.1538-1544 (1997)
- (51) 熊澤孝夫・堀田昌弘・杉山真一・橋詰俊成・谷恒夫:「交流重畳法の水トリー劣化診 断原理に関する理論的考察」, 電気学会論文誌 B, Vol.119, No.4, pp.491-499 (1999)
- (52)陳敏・浦野幸治・関口洋逸・米田英彦・神野厚英・福永定夫:「直埋ケーブル線路における部分放電測定方法の検証」,電気学会論文誌 B, Vol.122, No.4, pp.520-527 (2002)
- (53)小川達也・新元孝・浦辺裕二・室伏辰也:「実線路に適用可能な部分放電測定装置の 開発」,電気学会論文誌 B, Vol.127, No.2 (2007)

第3章 水トリー劣化検出技術の向上に関する研究

3.1 緒言

水トリー劣化による高圧 CV ケーブルの絶縁破壊事故が多発した 1970 年代後半(昭和 54 年頃)以降,第2章で紹介した様々な絶縁体の診断法が研究開発され実用化された。 1988 年までにフィールドでの適用が開始された主な診断法として,絶縁抵抗(メガー)法, 直流漏れ電流法,誘電正接(tanδ)法などのオフライン診断法と,直流重畳法,直流成分法, 活線 tanδ 法などのオンライン診断法があった。

当時は既に、社会生活における快適志向の高まりや産業の高度化などによる電力品質の 向上に対する要求が高まっており、電力ケーブルの絶縁破壊による停電の防止はもちろん のこと、絶縁診断のための停電も回避しなければならない状況になってきていた。

そのような中で、鹿島氏らは、当時の診断法では、停電が必要であったり、精度に不十 分な点があったりするという問題意識を持っていた。そこで、各診断法の長所を組み合わ せることによって短所を補い、診断精度が高く、しかもオンラインで測定できる方法を目 指し低周波重畳法の開発に着手した⁽¹⁾。その後の開発は上島氏らに引き継がれ、1990年(平 成2年)に低周波重畳法による CV ケーブル活線劣化診断装置 CMLF が実用化⁽²⁾⁽³⁾され、 1993年(平成5年)からオンライン診断法として本格的は運用がはじまった⁽⁴⁾。

本章では、CMLFの概要について説明し、実用化によって明らかになった課題を整理し、 水トリー劣化の検出性能の向上を目的とし CMLF の課題を解決するために行った交流絶 縁抵抗測定法の開発、そして、測定装置としての改善と測定結果の信頼性に関する検討を 行った結果についてまとめた。

3.2 低周波重畳法の開発

3.2.1 低周波重畳法開発の背景

電力会社の配電用ケーブルとして CV ケーブルが適用開始され 20 数年が経過しようと していた 1980 年代中頃(昭和 60 年前後), CV ケーブル特有の水トリー劣化による絶縁破 壊事故が多発するようになっていた。絶縁破壊事故を防止するための主なオフライン診断 法として直流漏れ電流法や誘電正接法が活用されていた当時は,コンピューターの普及な どに伴う電力需要家ニーズの高度化によって停電の調整が困難になってきていた。そのた め,オンライン診断法の研究が盛んに行われ,直流重畳法や直流成分法,活線 tanδ 法が一 部で適用されていた⁽²⁾⁽³⁾。 しかしながら,直流重畳法は EVT 中性点の改造が必要な場合や直流電圧の重畳が困難 な場合があり,直流成分法はデータの蓄積が必要な段階で劣化検出性能に疑問な点があっ た。また,活線 tanδ 法は局部的な劣化の検出が困難であるといった課題があった。

そこで、より劣化程度との相関が高く信頼性の高い結果が得られるオンライン診断法が 必要という考えに基づき、低周波重畳法の開発に着手された⁽¹⁾。その結果、1990年(平成 2年)に CMLF の実用化に伴いオンライン診断として運用開始され、その後 2 度の改良を 経て 1993年(平成 5 年)から本格的な運用がはじまった⁽⁴⁾。

3.2.2 低周波重畳法の測定原理

低周波重畳法の測定原理を図 3.1 に基づき次に説明する(4)。

なお,ここでは,損失電流 I_Rから交流絶縁抵抗 R_xを算出しているが,ブリッジ回路を 用いて交流絶縁抵抗 R_xを直接測定する方法も適用可能である。

①被測定ケーブルの導体と大地(遮へい層)間に 7.5Hz-20V の低周波電圧 E を重畳(印加)し,遮へい層の接地線から検出抵抗 Rd を介して低周波電流 I を検出する。

②この低周波電流 I は,充電(無効)電流 Ic と損失(有効)電流 IR が合成されたもので, この中から低周波成分の損失電流 IR のみを検出する。

③重畳(印加)した電圧 E と損失電流 I_Rから交流絶縁抵抗 R_xを算出して,劣化の度合いを判定する。すなわち,低周波損失電流(I_R=E/R_x)が大きくなったものを劣化していると判定するものである。

図 3.1 低周波重畳法の測定原理(4)

3.2.3 低周波重畳法の当初の測定装置 CMLF の概要

CMLF は, 1.3 節の図 1.24 に示す計測部,低周波重畳部,重畳用ケーブル部から構成され,その概要を表 3.1 に示す。また,図 3.2 にオンライン測定時の測定回路および装置構成を示す。

構成品	機能および内容
計測部	・低周波信号の発生・増幅および重畳電圧の調整
	・低周波電流を検出し、充電電流をキャンセルした損失電流から交
	流絶縁抵抗を算出
低周波重畳部	・スター結線した重畳用コンデンサの中性点に接続された重畳用
	トランスで,計測部から入力された低周波電圧を昇圧し,3相一
	括して重畳(零相電圧の検出に用いられる ZPD を信号重畳用に
	使用するイメージ)
	・スター結線した基準コンデンサの中性点から、重畳電圧の確認・
	調整と充電電流キャンセル用の基準信号を得るための信号を計
	測部に取り込む
	・測定時のみ各コンデンサが充電されるようにするため、コンデン
	サの1次側に高圧スイッチを内蔵
	・スイッチ,コンデンサ,トランスはSF6ガス室内で配線
重畳用ケーブル部	・架空配電線などの高圧母線にオンラインで接続するための移動
	用高圧ケーブル
	・高圧絶縁電線に被覆を剥ぎ取ることなく接続可能な接続機材の
	他,高圧充電部へのオンライン接続を間接で行うための全天候型
	間接活線操作棒(ホットスティック)などの機材から構成

表 3.1 CMLF の装置構成と主な機能

3.2.4 CMLF の測定方法

CMLF を用いたオンライン測定方法について次に説明する⁽⁵⁾。著者は、この測定方法を 充電電流キャンセル方式と呼んでいる。

- ①図 3.2 の回路において,低周波電圧 E を重畳する。
- ②SW を被測定ケーブル側に入れ,被測定ケーブルの接地線に流れる低周波電流 I を抵抗 R_dで電圧 V として検出し測定装置に記録する。
- ③SW を基準コンデンサ側に切替え,基準コンデンサから得られた電流 I_{re}を抵抗 R_vで 電圧に変換して検出した後増幅および位相調整(反転)を行い,被測定ケーブルに流 れる充電電流 I_cに相当する電圧 V_cと大きさが同じで位相が 180°異なる電圧に調整 する。この電圧を逆加算電圧 V_iとする。
- ④被測定ケーブルから得られ記録した電圧 V に逆加算電圧 V_i を加えると、図 3.3 に示す とおり、被測定ケーブルの損失電流 I_R に相当する電圧 V_R が得られ、 $R_X = R_d / V_R \times E$ として交流絶縁抵抗 R_X を算出する。

図 3.2 CMLF のオンライン測定回路例

図 3.3 絶縁体の等価回路と充電電流キャンセル方式のベクトル概念図(5)

3.2.5 低周波重畳法の判定基準

低周波重畳法の実用化に際し,15~25年使用された55条の撤去ケーブル(22~500mm²×30~50m)を用い,直流漏れ電流法,直流成分法,直流重畳法,活線tanδ法による測定結果との比較と交流破壊電圧との相関分析が行われている⁽²⁾⁽³⁾。その結果,低周波重畳法で得られた結果は,交流破壊電圧との相関が最も高く,劣化の程度に応じた測定結果が得られることを確認されている⁽²⁾⁽³⁾。オンライン測定時の判定基準は,これらの分析結果に基づき定められている。

判定基準制定の根拠となった低周波重畳法によるオンライン測定結果と交流破壊電圧の相関を示すデータを図 3.4 に示し,表 3.2 に判定基準と処置について示す。判定基準は, 交流破壊電圧の最低値の包絡線を結ぶカーブから決められており,その後に開発した交流 絶縁抵抗測定装置 AIR の導入後も有効性が確認され,低周波重畳法によるオンライン測定 時の判定基準として運用されている⁽⁴⁾。

図 3.4 低周波重畳法によるオンライン測定結果と交流破壊電圧の関係⁽²⁾⁽³⁾⁽⁴⁾

判定	オンライン 測定結果	処置	判定の根拠
不良	400MΩ以下	精密診断の実施 または早期更新計画 (2~3ヶ月以内)	1線地絡時の対地電圧(6.9kV)以下 で,絶縁破壊が生じる可能性がある
要注意	400MΩ 超過 1,000MΩ 以下	精密診断の実施 または1年後に再測定	1線地絡時の対地電圧(6.9kV)以下で,絶縁破壊が生じる可能性は小さいが,電気設備技術基準の耐電圧値(10.35kV)以下で,絶縁破壊が生じる可能性がある
良	1,000MΩ超過	定期絶縁診断の 継続実施	電気設備技術基準の耐電圧値 (10.35kV)以下で,絶縁破壊が生 じる可能性が小さい

表 3.2 低周波重畳法によるオンライン測定時の判定基準と処置(4)

3.2.6 低周波重畳法の水トリー劣化検出性能

低周波重畳法と各診断法(直流漏れ電流法,直流成分法,直流重畳法,活線 tanδ法)に よる測定結果と交流破壊電圧との相関分析⁽²⁾⁽³⁾の結果に基づき,水トリーの発生状況と検 出の容易性や各診断法の検出性能について表 **3.3** に整理した。

水トリー劣化の程度と絶縁体の等価回路より,橋絡水トリーが存在する場合は,水トリ ー劣化部が抵抗で表され,直流電圧の印加では漏れ電流が,交流電圧の印加では損失電流 が劣化信号として流れる。一方,橋絡水トリーが存在せず未橋絡水トリーのみの場合は, 水トリー劣化部が抵抗,健全部が静電容量で表される直列回路となり,直流電圧を印加し ても劣化信号としての漏れ電流がほとんど流れない。しかし,交流電圧を印加すると静電 容量に流れる充電電流が水トリー劣化部の抵抗に流れ劣化信号としての損失電流が生じる。 また,橋絡水トリーが存在してもその数が少ない場合は,水トリーの大きさや形状が直流 漏れ電流や交流損失電流の大きさに影響を及ぼす。図 3.5 に示すように扇状に太くなるタ イプの橋絡水トリーでは,直流漏れ電流,交流損失電流とも大きくなるので検出しやすく なる。一方,図 3.6 に示すように細長く針状に伸びるタイプの水トリーが成長し絶縁体を 橋絡した場合は,直流漏れ電流の検出には高電圧の印加が必要となることや,小さな交流 損失電流しか流れないことが多く,検出が難しくなる傾向がある。

83 - 93		Ι	П	Ш	IV
水トリーの	発生状況		-		
の発生せ	数	少ない (局部的)	少ない (局部的)	多い (全体的)	多い (全体的)
況	橋絡/未橋絡	未橋絡	橋絡	未橋絡	橋絡
絶	緑体の等価回路				
	検出の容易性	×	0	0	©
er ta	直流漏れ電流法 (オフライン)	×	0	×	0
**	直流重畳法 (オンライン)	×	0	×	0
候出可不	直流成分法 (オンライン)	×	×	×	0
8	活線tan&法 (オンライン)	×	×	0	0
	低周波重畳法 (オンライン)	Δ	0	0	0

表 3.3 水トリーの発生状況に対する各診断法の検出性能

1.00mm/div 図 3.5 扇状に太くなる水トリー (メチレンブルーで染色)

図 3.6 針状に細長く伸びる水トリー (クリスタルバイオレットで染色)

さらに、2.2.4 項で示した水トリーの電気的特性および 2.4.1 項で説明した 1988 年以前に 実用化された診断技術の特徴を踏まえると、橋絡水トリーに関しては、その数が少ない場 合でも直流電圧を印加または重畳する直流漏れ電流法や直流重畳法で検出可能であるが、 直流電圧を重畳しない直流成分法や充電電流に対する損失電流の割合を測定する活線 tanδ 法では、橋絡水トリーの数が少ない場合は検出困難となる。一方、未橋絡水トリーに関し ては、健全部の静電容量により直流電流が遮断されるため直流漏れ電流法、直流重畳法、 直流成分法では検出が困難であるが、その数が増加すると活線 tanδ 法で検出可能となる。

低周波重畳法は,活線 tanδ 法で使用する商用周波数(50/60Hz)より低く直流より高い 7.5Hz という周波数を用いており,さらに,tanδ のように充電電流に対する損失電流の割 合ではなく損失電流そのものの大きさから劣化の度合いを判定するため,他の診断法に比 べると劣化の度合いに応じた結果が得られる診断法であることが分かる。

3.2.7 CMLF の実用化によって明確になった課題

1990 年から CMLF がフィールドに適用されオンライン測定結果の蓄積によって,次に示す課題が明らかとなった⁽⁵⁾。

- ①高圧 CV ケーブルの最外層には、ビニルまたはポリエチレンシースがあり、図 3.2 に示すように遮へい層と大地間に静電容量 Cd が存在する。この静電容量 Cd が検出抵抗 Rd に並列に接続されることにより、測定結果に影響を及ぼすことが確認された。特に、高圧 CV ケーブルは架空布設、管路布設、水没の有無で静電容量 Cd の大きさが変わり、測定結果に及ぼす影響が異なることから、その影響を低減するため検出抵抗 Rd をできるだけ小さくする必要があった。しかし、検出抵抗 Rd を小さくすると測定感度および測定精度の低下を招いてしまうという課題が生じた。
- ②高圧 CV ケーブルの導体サイズや長さは様々で、CMLF の測定対象ケーブルの静電容 量 C_x は 10nF~2μF の範囲としている。交流絶縁抵抗 R_x が無限大とした場合、高圧 CV ケーブルは損失のない理想的なコンデンサと見なせるが、抵抗 R_d で検出すると、

図 3.7 に示すように $C_X \ge R_d$ が直列回路を構成することで検出電圧の位相ずれ θ が生じてしまう。これによって、ケーブル静電容量 C_X が大きくなるほど見かけの損失が増加し、本来の値より低下した交流絶縁抵抗 R_X が得られ、絶縁性能が低下したものと誤った判定につながる恐れがあることが確認された。

③CMLF は充電電流のキャンセルを手動で行う必要があり、ノイズの影響が避けられな いオンライン測定では調整に熟練を要す場合や調整困難な場合が多かった。

図 3.7 Cx と Rd が直列回路を構成する時の充電電流キャンセル方式のベクトル概念図(5)

3.3 交流絶縁抵抗測定法の開発

CMLF の技術的対応を行う中で、実験室とフィールドでの測定結果の相違点、前節で説 明した課題に加え、測定回路および測定方法と測定原理の整合性についても課題となった。 そこで、著者は低周波重畳法の測定原理を忠実に実現できる方法を開発できれば、水トリ ー劣化を含む様々な劣化の度合いと相関の高い結果が得られることを期待し、低周波重畳 法によるオンライン診断の本格運用が開始される前の 1992 年(平成4年)に、測定原理を より忠実に実現するための測定回路および測定方法について基礎からの検討を開始した。 その結果、1993 年(平成5年)に交流絶縁抵抗測定法を考案し、翌年に自動測定可能な交 流絶縁抵抗測定装置 AIR を開発した。

CMLF では、遮へい層と対地間に存在するシースを含む静電容量 C_dの影響による測定誤 差と、測定対象ケーブルの静電容量が大きくなると実際より劣化が進んでいると評価して しまうなどの課題があった。これらの課題解決を目的として、ブリッジ回路を用いた新し い測定方法やブリッジ回路に用いる標準コンデンサの交流絶縁抵抗で補正する方法につい て検討し、開発した手法を適用した測定装置について、低周波重畳法による高圧 CV ケー ブルの劣化診断装置としての適用可否について評価を行った。さらに、AIR の開発によっ て原理にかなう測定ができるようになったことで、CMLF に静電誘導や電磁誘導による測 定誤差が生じることが明らかとなり、これらの対策についても検討した。

3.3.1 測定理論

誘電体の電気的特性評価にはブリッジ回路が用いられることが多く,測定周波数でブリ ッジ回路のバランスを取った状態で測定するのが一般的であるが,交流絶縁抵抗測定法で は,図 3.8 に示すようなブリッジ回路において,測定周波数より十分に高い周波数でバラ ンスを取った後,測定周波数に切替えると被測定ケーブルの交流絶縁抵抗に相当する信号 が差動電圧として検出できるという原理に基づき測定を行う⁽⁰⁾。

交流絶縁抵抗測定理論については、図 3.8 に示す等価回路で確認している⁽⁶⁾が、実際に使用する標準コンデンサにも静電容量 C_s に対して並列に接続される抵抗 R_s が存在することから、より実態に近い図 3.9 に示す回路で説明する⁽⁵⁾。なお、抵抗 $R_s=\infty$ とすることで図 3.8 の回路にも適用可能である。また、正常な測定回路では、シースの絶縁抵抗 R_{sh} は検出抵抗 R_d に対し十分大きな値を取り、理論計算に影響を及ぼさないので除外している。

図 3.8 交流絶縁抵抗測定の基本回路例⁽⁵⁾

図 3.9 交流絶縁抵抗測定の理論計算の回路例(5)

各部の抵抗と静電容量の並列回路のアドミッタンスをそれぞれ Y_s , Y_v , Y_x , Y_d とする と、次式のようになる。

$$Y_{s} = \frac{1}{R_{s}} + j\omega C_{s} \qquad \dots \qquad (3.1) \qquad \qquad Y_{V} = \frac{1}{R_{V}} + j\omega C_{V} \qquad \dots \qquad (3.2)$$
$$Y_{X} = \frac{1}{R_{X}} + j\omega C_{X} \qquad \dots \qquad (3.3) \qquad \qquad Y_{d} = \frac{1}{R_{d}} + j\omega C_{d} \qquad \dots \qquad (3.4)$$

これらより、差動信号として(3.5)式が得られる。

$$\frac{V}{E} = \frac{V_b - V_a}{E} = \frac{Y_X}{Y_X + Y_d} - \frac{Y_S}{Y_S + Y_V} = \frac{Y_X Y_V - Y_S Y_d}{(Y_X + Y_d)(Y_S + Y_V)} = \frac{\frac{1}{R_X R_V} - \frac{1}{R_S R_d} - \omega^2 (C_X C_V - C_S C_d) + j\omega \left(\frac{C_V}{R_X} + \frac{C_X}{R_V} - \frac{C_d}{R_S} - \frac{C_d}{R_d}\right)}{\left[\frac{1}{R_X} + \frac{1}{R_d} + j\omega (C_X + C_d)\right] \left[\frac{1}{R_S} + \frac{1}{R_V} + j\omega (C_S + C_V)\right]}$$

$$\dots (3.5)$$

ブリッジ回路のバランス調整時に被測定ケーブル側から得られる信号を $V_b/E_b=B_x+jB_y$ とし、 $B_x & V_b/E_b$ の実数部、 $B_y & V_b/E_b$ の虚数部として(3.3)式および(3.4)式を代入 すると、

$$\frac{V_{b}}{E_{b}} = \frac{Y_{X}}{Y_{X}+Y_{d}} = B_{X} + jB_{y} = \frac{\frac{1}{R_{X}} + j\omega_{b}C_{X}}{\frac{1}{R_{X}} + \frac{1}{R_{d}} + j\omega_{b}(C_{X}+C_{d})} = \frac{\frac{1}{R_{X}} \left(\frac{1}{R_{X}} + \frac{1}{R_{d}}\right) + \omega_{b}^{2}C_{X}(C_{X}+C_{d}) + j\omega_{b}\left(\frac{C_{X}}{R_{d}} - \frac{C_{d}}{R_{d}}\right)}{\left(\frac{1}{R_{X}} + \frac{1}{R_{d}}\right)^{2} + \omega_{b}^{2}(C_{X}+C_{d})^{2}} \quad \dots (3.6)$$

が得られ、測定を模擬した場合のBx, Byの値を次式によって算出できる。

$$B_{x} = \frac{\frac{1}{R_{x}} \left(\frac{1}{R_{x}} + \frac{1}{R_{d}}\right) + \omega_{b}^{2} C_{x} (C_{x} + C_{d})}{\left(\frac{1}{R_{x}} + \frac{1}{R_{d}}\right)^{2} + \omega_{b}^{2} (C_{x} + C_{d})^{2}} \qquad \dots \qquad (3.7) \qquad \qquad B_{y} = \frac{\omega_{b} \left(\frac{C_{x}}{R_{d}} - \frac{C_{d}}{R_{x}}\right)}{\left(\frac{1}{R_{x}} + \frac{1}{R_{d}}\right)^{2} + \omega_{b}^{2} (C_{x} + C_{d})^{2}} \qquad \dots \dots \qquad (3.8)$$

バランス調整は、 $V_a = V_b$ となるように R_V 、 C_V の値を調整することになるので、

$$\frac{V_{a}}{E_{b}} = \frac{Y_{S}}{Y_{S} + Y_{V}} = \frac{V_{b}}{E_{b}} = \frac{Y_{X}}{Y_{X} + Y_{d}} = B_{x} + jB_{y}$$
 (3.9)

となる。(3.9) 式に(3.1) 式および(3.2) 式を代入すると,

$$B_{x} + jB_{y} = \frac{Y_{S}}{Y_{S} + Y_{V}} = \frac{\frac{1}{R_{S}} + j\omega_{b}C_{S}}{\frac{1}{R_{S}} + \frac{1}{R_{V}} + j\omega_{b}(C_{S} + C_{V})} = \frac{\frac{1}{R_{S}}\left(\frac{1}{R_{S}} + \frac{1}{R_{V}}\right) + \omega_{b}^{2}C_{S}(C_{S} + C_{V}) + j\omega_{b}\left(\frac{C_{S}}{R_{V}} - \frac{C_{V}}{R_{S}}\right)}{\left(\frac{1}{R_{S}} + \frac{1}{R_{V}}\right)^{2} + \omega_{b}^{2}(C_{S} + C_{V})^{2}} \qquad (3.10)$$

となり、 $R_V \ll R_S \cong \infty$ として整理すると、次式が得られる。

$$B_{x} + jB_{y} \cong \frac{\omega_{b}^{2}C_{S}(C_{S} + C_{V}) + j\omega_{b}\frac{C_{S}}{R_{V}}}{\frac{1}{R_{V}^{2}} + \omega_{b}^{2}(C_{S} + C_{V})^{2}} = \frac{\omega_{b}C_{S}R_{V}}{1 + [\omega_{b}(C_{S} + C_{V})R_{V}]^{2}} [\omega_{b}(C_{S} + C_{V})R_{V} + j] \qquad \dots (3.11)$$

バランス調整条件より、(3.11) 式の両辺の実数部と虚数部はそれぞれ等しくなるので、

$$B_{x} \cong \frac{\omega_{b}C_{S}R_{V}}{1 + [\omega_{b}(C_{S} + C_{V})R_{V}]^{2}} \omega_{b}(C_{S} + C_{V})R_{V} \quad \dots \quad (3.12) \quad B_{y} \cong \frac{\omega_{b}C_{S}R_{V}}{1 + [\omega_{b}(C_{S} + C_{V})R_{V}]^{2}} \quad \dots \quad (3.13)$$

が得られ、これを解くと R_v と C_v の値を次式で得ることができ、ブリッジ回路のバランス を概ね取ることができる。

$$R_{V} \cong \frac{1}{\omega_{b}C_{S}} \left(\frac{B_{x}^{2} + B_{y}^{2}}{B_{y}} \right) \qquad \dots \qquad (3.14) \qquad \qquad C_{V} \cong C_{S} \left(\frac{B_{x}}{B_{x}^{2} + B_{y}^{2}} - 1 \right) \qquad \dots \qquad (3.15)$$

ここで、(3.5) 式において、周波数 f_b ($2\pi f_b = \omega_b$)の電圧を印加した時にブリッジ回路の バランスを取る ($V_a = V_b$) と、

実数部より

$$C_X C_V - C_S C_d = \frac{1}{\omega_b^2} \left(\frac{1}{R_X R_V} - \frac{1}{R_S R_d} \right)$$
 (3.16)

虚数部より

$$\frac{C_V}{R_X} + \frac{C_X}{R_V} = \frac{C_d}{R_S} + \frac{C_S}{R_d}$$

$$(3.17)$$

が成立するので,(3.5)式で測定周波数を f_m(2πf_m=ω_m)とした分子に(3.16)式と(3.17) 式を代入すると,(3.5)式の分子は,

となる。

また, 測定回路の定数として $R_d < 100 \Omega$, $R_V \leq 1,000 \Omega$ としていることから,

$$\frac{1}{R_d} \gg \frac{1}{R_X}, \quad \omega(C_X + C_d) \qquad \cdots \qquad (3.19) \qquad \frac{1}{R_V} \gg \frac{1}{R_S}, \quad \omega(C_S + C_V) \qquad \cdots \qquad (3.20)$$

となるので、(3.5) 式の分母は、

(3.5) 式分母
$$\cong \frac{1}{R_d R_V}$$
 (3.21)

となる。

(3.18) 式および (3.21) 式より, 印加電圧を Em, 差動電圧を Vm とした (3.5) 式は,

$$\frac{V_{\rm m}}{E_{\rm m}} \simeq \left(\frac{R_{\rm d}}{R_{\rm X}} - \frac{R_{\rm V}}{R_{\rm S}}\right) \left(1 - \frac{\omega_{\rm m}^2}{\omega_{\rm b}^2}\right) \qquad (3.22)$$

と表され、整理すると交流絶縁抵抗 Rx を得ることができる。

測定条件により ω_b , ω_m , E_m が決まり, バランス調整により R_d , R_V が決定されるので, 標準コンデンサの交流絶縁抵抗に相当する R_s の値が既知であれば, (3.23) 式を用いること で測定結果の補正が可能であることを示している。なお,標準コンデンサの抵抗 $R_s \cong \infty$ と なり図 3.8 に示す基本回路で扱うことができる場合は, (3.24) 式のように簡略化できる。

3.3.2 測定方法

交流絶縁抵抗測定装置 AIR を用いオンラインで交流絶縁抵抗を測定する場合の回路例 を図 3.10 に示す。被測定ケーブルと標準コンデンサ Cs に交流電圧を印加し,それぞれに 流れる電流を可変抵抗 Rd, Rv および可変静電容量 Cv によって電圧信号に変換する。実際 には、ケーブル遮へい層と大地間にシースの静電容量を含む静電容量 Cd とシースの対地間 の絶縁抵抗 Rsh が接続されたブリッジ回路(図 3.8)を構成し、差動入力として測定を行う。 測定方法を次に説明する。

図 3.10 オンラインでの交流絶縁抵抗測定回路例(5)

- ①測定周波数 f_m より十分に高い周波数 f_b の電圧 E_b を印加し,可変抵抗 R_d , R_v ,可変静 電容量 C_v を変化させ、ブリッジ回路のバランスを取る。なお、バランス調整を自動で 行うため、標準コンデンサ C_s と被測定ケーブルから得られるベクトル電圧信号 V_a , $V_b \ge f_b (2\pi f_b = \omega_b)$, E_b , C_s ,任意の値に設定可能な R_d ,任意の値に細かく調整可能な C_v , R_v を用い、 $V_a = V_b$ となる C_v , R_v の値を算出し設定する⁽⁷⁾。実際には1回の処理 で完全にバランスを取ることが不可能であるため、この操作を数回繰り返すことで、 $V_b - V_a$ が概ね最小になるように調整する。
- ②調整した状態を維持したまま,測定周波数 f_m の電圧 E_m を印加し,その時の差動電圧 V_m を検出し,標準コンデンサの交流絶縁抵抗(並列等価抵抗) R_s を考慮した(3.23) 式を用いて交流絶縁抵抗 R_x を算出する⁽⁶⁾。この式において,理想的な標準コンデンサ で交流絶縁抵抗 R_s が十分に大きく,測定周波数 $f_m(2\pi f_m = \omega_m)$ に対しバランス調整周 波数 $f_b(2\pi f_b = \omega_b)$ が十分に高いと, $R_x \cong R_d / V_m \times E_m$ として算出できることが分かる。
- ③ところで、バランス調整後に測定周波数 fm に切替えた時の差動電圧 Vm を測定して結 果を算出する場合、フィールドでのオンライン測定では、測定値の変動が大きく測定

が困難になることや測定精度の低下を招くことが多くなる。そのため、図 3.11 に示す ように、敢えてバランス調整時の標準コンデンサ側検出抵抗 R_V を調整値に対し±0.1% ~±5%の範囲で変化させ、2 つの条件でベクトル電圧 V_{m+} (X_+ , Y_+), V_{m-} (X_- , Y_-) を測定する。この 2 つのベクトル電圧が作る三角形の高さを (3.25) 式を用いて求め ることで、 V_m の大きさに相当する結果を得ている⁽⁸⁾。著者は、これを 2 点測定法と呼 んでおり、完全にバランスを取る必要がないため、S/N 比の向上による測定結果の信 頼性向上と測定の自動化を容易にすることができる。

$$V_{m} \cong \frac{x_{+} y_{-} - x_{-} y_{+}}{\sqrt{(x_{-} - x_{+})^{2} + (y_{-} - y_{+})^{2}}}$$

..... (3.25)

$$V_{a} + V_{m} + W_{m} + W_{m$$

図 3.11 2 点測定法のベクトル概念図(5)

3.3.3 測定装置 AIR の概要

AIR のオンライン測定装置は、測定装置、重畳装置、強制接地箱、重畳用ケーブル部から構成されており、オプションとしてオフライン測定専用の TC ボックスがある。オンライン測定とオフライン測定で使用するすべての装置・機器類について、1.3 節の図 1.25 に示している。

開発当初の測定装置構成では、標準コンデンサを別に設け重畳装置に内蔵していなかっ たが、機器が1台増えることで運搬性や作業性が CMLF に比べ低下するため、最終的には 標準コンデンサを重畳装置に内蔵させたものとした。また、オンライン測定用とオフライ ン測定用の構成の概要を表 3.4 および表 3.5 に示し、図 3.12 と図 3.13 にオンラインとオフ ラインでの測定回路構成例を示す。

雄卍日	十キキ,舌具,十わ歴治わじ	測定に必要な構成	
竹門八百口	入ささ・単単・土な性能など	オンライン	オフライン
測定装置	w544×d504×h460(mm)/39kg	0	0
計測制御田 DC	OS : Windows	\bigcirc	\bigcirc
可似前仰开 FC	計測ソフト・USB ケーブル付	0	\bigcirc
	w570×d610×h510(mm) / 88kg		
重畳装置	定格電圧: 7.2kV	0	_
	重畳電圧: ~約 20Vrms		
路制控册签	w200×d200×h100(mm)/2kg	\bigcirc	
1年前1安地相	1,000A-1 秒	\bigcirc	
香典田ケーブル部	6.6kV 用バイパスケーブル	\bigcirc	
単重用クトラル印	全天候型高圧活線接続機材	0	
停電測定用 TC ボックス	w200×d230×h250(mm)/12kg		
(オプション)	出力電圧:~約 1,000Vrms		U

表 3.4 測定条件に応じた AIR の装置構成

構成品	機能および内容
	・信号の発生・増幅および重畳電圧の調整
測定装置	・バランス調整と2点測定法による交流絶縁抵抗の算出
	・低周波電磁誘導対策の適用
計測制御用 PC	・測定装置の制御、演算およびデータ保存
	・スター結線した重畳用コンデンサの中性点に接続された
	単畳用トランスで、計測部から入力された交流電圧を昇
	上し、3 相一括して重畳(零相電圧の検出に用いられる
	ZPD を信号重畳用に使用するイメージ)
	 ・スター結線した標準コンデンサの中性点から、重畳電圧
	の確認・調整のための信号および基準信号を測定装置に
重畳装置	取り込む
	・標準コンデンサには、突入電流に対する耐性が高く tanδ
	が小さいダブルメタライズドポリプロピレンフィルムコ
	ンデンサを適用
	・測定時のみ各コンデンサが充電されるようにするため,
	コンデンサの1次側に高圧スイッチを内蔵
	・SF ₆ ガス室内にスイッチ,コンデンサ,トランスを配置
	・静電誘導対策の適用
	 ・オンライン測定時に、万が一被測定ケーブルで絶縁破
路 制 培 地	壊が生じた場合、測定者および測定装置を保護するた
1年前1天地相	めに, 強制的に地絡・短絡(~1,000A)電流を1秒間
	流すことができる保護装置
	・架空配電線などの高圧母線にオンラインで接続するため
	の移動用高圧ケーブル
手甲田を、ブル 加	・高圧絶縁電線に被覆を剥ぎ取ることなく接続可能な接続
	機材の他,高圧充電部へのオンライン接続を間接で行う
	ための全天候型間接活線操作棒 (ホットスティック) など
	の機材から構成
	・重畳装置や重畳用ケーブルなどの高圧機器を使用せ
	ず、より効率的にオフライン測定ができるようにする
停電測定用 TC ボックス	ために, トランスと標準コンデンサを1つのボックス
	に内蔵したもの(最大出力電圧:約1,000Vrms)

表 3.5 AIR 構成品の主な機能

図 3.12 交流絶縁抵抗をオンラインで測定する場合の装置構成および回路例

図 3.13 交流絶縁抵抗をオフラインで測定する場合の装置構成および回路例

3.3.4 測定範囲と測定誤差の数値計算

高圧ケーブルの接地線から信号を検出することから電気設備技術基準により被測定ケ ーブル側の検出抵抗 R_d は 100 Ω 以下とする必要がある。また、シース絶縁抵抗を含む被測 定ケーブル遮へい層と大地間の絶縁抵抗 R_{sh} は通常 10 k Ω 以上となることから、図 3.8 に 示す交流絶縁抵抗測定の基本回路では(3.24)式が成り立つ。したがって、通常の測定にお いて測定周波数 f_m に対しバランス調整周波数 f_b が十分に大きければ、ほぼ正確な測定結果 が得られることが分かる。そこで、基本回路とは異なり実態に近い等価回路を検討し、MS-Excel を用いた数値計算で測定範囲と測定結果の妥当性を確認することとした。

(1) 遮へい層と大地間に存在する静電容量 Cd の影響確認

図 3.9 に示す回路において, CMLF の課題でもあった遮へい層と大地間に存在する静電 容量 C_dの影響について, (3.25) 式で求めた V_mの値を (3.24) 式に代入し交流絶縁抵抗を 算出した場合と, (3.23) 式を用い標準コンデンサの交流絶縁抵抗 R_s で補正した場合につ いて確認した。

1)2点測定法で得られた結果に対する影響

実際のフィールド測定において C_d が 1 μ F を超過することほとんどはないが,表 3.6 の条件において,10 μ F までの変化の影響を R_X と C_X の組み合わせにおいて計算した。バランス調整周波数を $f_b=200$ Hz,測定周波数を $f_m=7.5$ Hz とし,次の手順で算出している。

①各パラメータの値を(3.7)式および(3.8)式に代入し、被測定ケーブルから得られる 信号 B_x, B_yを算出する。

②この(3.7)式および(3.8)式から得た B_x, B_yとω_b, C_sの値を(3.14)式および(3.15)
 式に代入して R_v, C_vを算出し、バランス調整条件を決定する。

③算出した Rv の値に対して±0.1 %~±5 %変化させた時の 2 つのベクトル電圧 V_m+ (X+, Y+), V_m-(X-, Y-)を求め, (3.25) 式を用いて 2 点測定値 V_mを算出する。

④この Vmの値と他のパラメータの値を(3.24)式に代入して、交流絶縁抵抗の測定結果 を算出する。

$C_{\rm s} = 10 \text{ nF}$
$R_{\rm s} = 1 \ {\rm T}\Omega$
$\overline{R_{\rm v}}=0.1\ \Omega\sim 1,000\ \Omega$
$R_x = 100$ GΩ, 10 GΩ, 1 GΩ, 100 MΩ, 10 MΩ
$C_{\rm x} = 1 {\rm n} {\rm F}, 10 {\rm n} {\rm F}, 100 {\rm n} {\rm F}, 1 {\rm \mu} {\rm F}, 3 {\rm \mu} {\rm F}$
$\overline{R_{\rm d}} = 3 \ \Omega, \ 6 \ \Omega, \ 12 \ \Omega, \ 25 \ \Omega, \ 50 \ \Omega$
$\overline{C_{\rm d}=0\ \mu\rm{F}\sim}10\ \mu\rm{F}$

表 3.6 2 点測定法による測定結果への影響の確認範囲(5)

これによって得られた交流絶縁抵抗測定結果の理論値(= R_x)に対する誤差を表 3.7 に 示す。なお,表中の数値範囲は C_d が $0\sim10\mu$ F まで変化した時の%誤差の範囲を示してお り,また,「Cannot measure above $1T\Omega$ 」と記載しているところは,交流絶縁抵抗の測定結果 がマイナスとなり測定範囲の上限を超過していることを示している。

この結果より,被測定ケーブルの交流絶縁抵抗 Rx(=理論値)および静電容量 Cxの値 が大きくなるほど,測定誤差が大きくなることが分かる。高圧 CV ケーブルの劣化診断で は、1GΩ が良・要注意判定のしきい値である⁽²⁾⁽³⁾⁽⁴⁾ことから、ケーブルの静電容量 C_x が大きくなると劣化判定の信頼性低下を招くことになる。

R = 1 TO				C _x		
N 5	3 1 1 2 2	1 nF	10 nF	100 nF	1 µF	3 µF
	100 GΩ	1.2~6.0	11.3~13.6	Canno	t measure above	e 1 TΩ
	10 GΩ	0.2~0.7	1.2~1.4	11.3~11.7	Cannot measu	re above 1 T Ω
$R_{\rm x}$	1 GΩ	0.2~0.3	0.2~0.3	1.2	11.3	43.2
	100 MΩ	0.1~0.2	0.2	0.2~0.3	1.2	3.2
	10 MΩ	0.1~0.2	0.1~0.2	0.2	0.2	0.4

表 3.7 2 点測定法の測定誤差(5)

[%]

2)2 点測定法で得られた結果の補正値に対する影響

2 点測定法では誤差が大きくなる場合があることから,前項手順とほぼ同様で同一周波数を用いた測定を模擬し,(3.24)式の代わりに(3.23)式を用い標準コンデンサの交流絶縁抵抗 R_S で補正した測定結果に対する静電容量 C_d の影響を確認した。表 3.8 の条件において, 10μ F までの変化の影響を R_X と C_X の組み合わせにおいて計算し,さらに, R_S を変化させた場合についても計算した。理論値(= R_X)に対する交流絶縁抵抗測定結果の補正値の誤差を表 3.9 に示す。なお,補正の効果を確認するため,表 3.7 と同様の表示内容としている。

表 3.8 2 点測定法で得られた結果の補正値への影響の確認範囲(5)

$C_{\rm s} = 10 \rm nF$
$R_{\rm s} = 1 \ {\rm G}\Omega, \ 10 \ {\rm G}\Omega, \ 100 \ {\rm G}\Omega, \ 1 \ {\rm T}\Omega$
C_{v} =調整に必要な範囲
$R_{\rm v} = 0.1 \ \Omega \sim 1,000 \ \Omega$
$R_x = 100 \text{ G}\Omega, 10 \text{ G}\Omega, 1 \text{ G}\Omega, 100 \text{ M}\Omega, 10 \text{ M}\Omega$
$C_{\rm x} = 1 {\rm n}$ F, 10 nF, 100 nF, 1 μ F, 3 μ F
$\overline{R_{\rm d}}$ = 3 Ω , 6 Ω , 12 Ω , 25 Ω , 50 Ω
$\overline{C_{\rm d}=0\ \mu\rm{F}\sim}10\ \mu\rm{F}$

表 3.7 と表 3.9 で R_s =1TΩ の場合の誤差を比較すると,補正によって C_d の影響による誤 差が小さくなり,測定範囲が拡大することが分かる。このことより,(3.23)式を用いた補 正が測定精度の向上と測定範囲拡大に有効であると言える。また, R_s が1TΩ ⇒ 1GΩ と小 さくなるにつれ, C_d の影響が表れやすくなり測定範囲が狭くなることが分かるが,高圧 CV ケーブルの劣化診断では,交流絶縁抵抗として10MΩ~10GΩの測定範囲⁽²⁾⁽⁴⁾と,1GΩ 以下 の測定誤差 $\pm 10\%$ 以下が必要となることから、 R_s が $10G\Omega$ 以上であれば、 C_d の影響を大き く受けずに劣化判定が可能であることが分かる。

P	-1 GO			$C_{\rm x}$		
Λ _s	-1 022	1 nF	10 nF	100 nF	1 µF	3 µF
	100 GΩ	1.4~5.6	10.9~16.5	Canno	t measure above	e 1 TΩ
	10 GΩ	0.1~0.6	1.0~1.4	9.0~16.4	Cannot measur	re above $1 \text{ T}\Omega$
$R_{\rm x}$	1 GΩ	0~0.1	0~0.2	0.9~1.4	16.2~16.4	72.4~72.9
	100 MΩ	0~0.1	0~0.1	0.1	1.4	4.4
	10 MΩ	0~0.1	0~0.1	0~0.1	0.1	0.4
P -	-10 GO			C _x		
Λs	10 032	1 nF	10 nF	100 nF	1 µF	3 µF
	100 GΩ	0.1~4.8	1.4~2.8	12.7~16.4	Cannot measur	re above 1 T Ω
	10 GΩ	0~0.5	0.1~0.3	1.2~1.5	16.4~16.8	73.3~73.8
$R_{\rm x}$	1 GΩ	0~0.1	0~0.1	0.1~0.2	1.4~1.5	4.4
	100 MΩ	0~0.1	0~0.1	0~0.1	0.1	0.4
	10 MΩ	0~0.1	$0 \sim 0.1$	$0 \sim 0.1$	0	0
D 100 CO						
<i>R</i> =	100 GO			C _x		
<i>R</i> _s =	=100 GΩ	1 nF	10 nF	<i>C</i> _x 100 nF	1 μF	3 μF
<i>R</i> _s =	=100 GΩ 100 GΩ	1 nF 0.1~4.7	10 nF 1.4~2.8	$\frac{C_{\rm x}}{100 \rm nF}$ $1.5 \sim 3.9$	1 μF 16.9~22.0	3 μF 75.4~83.0
<i>R</i> _s =	=100 GΩ 100 GΩ 10 GΩ	1 nF 0.1~4.7 0~0.5	10 nF 1.4~2.8 0.1~2.0	$ C_{x} 100 nF 1.5~3.9 0.1~0.4 $	1 μF 16.9~22.0 1.5~1.8	3 μF 75.4~83.0 4.5~4.8
$R_{\rm s} =$ $R_{\rm x}$	-100 GΩ 100 GΩ 10 GΩ 1 GΩ	1 nF 0.1~4.7 0~0.5 0~0.1	10 nF 1.4~2.8 0.1~2.0 0~0.1	$ C_x 100 nF 1.5~3.9 0.1~0.4 0~0.1 $	1 μF 16.9~22.0 1.5~1.8 0.1~0.2	3 μF 75.4~83.0 4.5~4.8 0.4~0.5
$R_{\rm s} =$ $R_{\rm x}$	=100 GΩ 100 GΩ 10 GΩ 1 GΩ 100 MΩ	$ \begin{array}{r} 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array} $	$ \begin{array}{r} 10 \text{ nF} \\ 1.4 \sim 2.8 \\ 0.1 \sim 2.0 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array} $	$ \begin{array}{r} C_x \\ \hline 100 \text{ nF} \\ 1.5 \sim 3.9 \\ 0.1 \sim 0.4 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array} $	1 μF 16.9~22.0 1.5~1.8 0.1~0.2 0	3 μF 75.4~83.0 4.5~4.8 0.4~0.5 0
$R_{\rm s} =$ $R_{\rm x}$	-100 GΩ 100 GΩ 10 GΩ 1 GΩ 100 MΩ 100 MΩ	$ \begin{array}{r} 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array} $	$ \begin{array}{r} 10 \text{ nF} \\ 1.4 \sim 2.8 \\ 0.1 \sim 2.0 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array} $	$ \begin{array}{r} C_{x} \\ 100 \text{ nF} \\ 1.5 \sim 3.9 \\ 0.1 \sim 0.4 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array} $	1 μF 16.9~22.0 1.5~1.8 0.1~0.2 0 0	$ \begin{array}{r} 3 \ \mu F \\ \hline 75.4 \sim 83.0 \\ 4.5 \sim 4.8 \\ 0.4 \sim 0.5 \\ \hline 0 \\ 0 \\ 0 \end{array} $
$R_{\rm s} =$ $R_{\rm x}$	=100 GΩ 100 GΩ 10 GΩ 1 GΩ 100 MΩ 10 MΩ =1 TΩ	$ \begin{array}{r} 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array} $	$ \begin{array}{r} 10 \text{ nF} \\ 1.4 \sim 2.8 \\ 0.1 \sim 2.0 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array} $	$ \begin{array}{r} C_{x} \\ 100 \text{ nF} \\ 1.5 \sim 3.9 \\ 0.1 \sim 0.4 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ C_{x} \end{array} $	1 μF 16.9~22.0 1.5~1.8 0.1~0.2 0 0	3 μF 75.4~83.0 4.5~4.8 0.4~0.5 0 0
$R_{\rm s} =$ $R_{\rm x}$	=100 GΩ 100 GΩ 10 GΩ 1 GΩ 100 MΩ 10 MΩ =1 TΩ	1 nF 0.1~4.7 0~0.5 0~0.1 0~0.1 0~0.1 1 nF	$ \begin{array}{r} 10 \text{ nF} \\ 1.4 \sim 2.8 \\ 0.1 \sim 2.0 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 10 \text{ nF} \end{array} $	$ C_x 100 nF 1.5~3.9 0.1~0.4 0~0.1 0~0.1 0~0.1 C_x 100 nF $	1 μF 16.9~22.0 1.5~1.8 0.1~0.2 0 0 1 μF	3 μF 75.4~83.0 4.5~4.8 0.4~0.5 0 0 3 μF
$R_{s} =$ R_{x}	=100 GΩ 100 GΩ 10 GΩ 1 GΩ 100 MΩ 10 MΩ =1 TΩ 100 GΩ	$ \begin{array}{r} 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ \hline 1 \text{ nF} \\ 0.1 \sim 4.7 \end{array} $	$ \begin{array}{r} 10 \text{ nF} \\ 1.4 \sim 2.8 \\ 0.1 \sim 2.0 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 10 \text{ nF} \\ 0 \sim 1.9 \\ \end{array} $	$ \begin{array}{r} C_x \\ 100 nF \\ 1.5 \sim 3.9 \\ 0.1 \sim 0.4 \\ 0 \sim 0.1 \\ 0 \sim 0.3 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ $	1 μF 16.9~22.0 1.5~1.8 0.1~0.2 0 0 1 μF 1.8~5.8	$ \begin{array}{r} 3 \ \mu F \\ \overline{75.4 \sim 83.0} \\ 4.5 \sim 4.8 \\ 0.4 \sim 0.5 \\ 0 \\ 0 \\ 0 \\ \hline 3 \ \mu F \\ 5.2 \sim 8.0 \\ \end{array} $
$R_{\rm s} =$ $R_{\rm x}$ $R_{\rm s}$	=100 GΩ 100 GΩ 10 GΩ 1 GΩ 100 MΩ 100 MΩ =1 TΩ 100 GΩ 10 GΩ	$ \begin{array}{r} 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ \hline 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ \end{array} $	$ \begin{array}{r} 10 \text{ nF} \\ 1.4 \sim 2.8 \\ 0.1 \sim 2.0 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ \hline 0 \sim 0.1 \\ \hline 0 \sim 1.9 \\ 0 \sim 0.2 \\ \end{array} $	$ \begin{array}{c} C_{x} \\ 100 \text{ nF} \\ 1.5 \sim 3.9 \\ 0.1 \sim 0.4 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ C_{x} \\ 100 \text{ nF} \\ 0.2 \sim 3.1 \\ 0 \sim 0.4 \\ \end{array} $	$ \begin{array}{r} 1 \ \mu F \\ 16.9 \sim 22.0 \\ 1.5 \sim 1.8 \\ 0.1 \sim 0.2 \\ 0 \\ 0 \\ 1 \ \mu F \\ 1.8 \sim 5.8 \\ 0.2 \sim 0.6 \\ \end{array} $	$ \begin{array}{r} 3 \ \mu F \\ \overline{75.4 \sim 83.0} \\ 4.5 \sim 4.8 \\ 0.4 \sim 0.5 \\ 0 \\ 0 \\ 0 \\ \hline 3 \ \mu F \\ 5.2 \sim 8.0 \\ 0.5 \sim 0.7 \\ \end{array} $
$R_{s} =$ R_{x} R_{s}	=100 GΩ 100 GΩ 10 GΩ 1 GΩ 100 MΩ =1 TΩ 100 GΩ 10 GΩ 1 GΩ	$ \begin{array}{r} 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ \hline 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ \end{array} $	$ \begin{array}{r} 10 \text{ nF} \\ 1.4 \sim 2.8 \\ 0.1 \sim 2.0 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ \hline 0 \sim 0.1 \\ \hline 0 \sim 1.9 \\ 0 \sim 0.2 \\ 0 \sim 0.1 \\ \end{array} $	$ \begin{array}{r} C_x \\ 100 nF \\ 1.5 \sim 3.9 \\ 0.1 \sim 0.4 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ C_x \\ 100 nF \\ 0.2 \sim 3.1 \\ 0 \sim 0.4 \\ 0 \sim 0.1 \\ \end{array} $	$ \begin{array}{r} 1 \ \mu F \\ 16.9 \sim 22.0 \\ 1.5 \sim 1.8 \\ 0.1 \sim 0.2 \\ 0 \\ 0 \\ 1 \ \mu F \\ 1.8 \sim 5.8 \\ 0.2 \sim 0.6 \\ 0 \sim 0.1 \\ \end{array} $	$3 \mu F$ $75.4 \sim 83.0$ $4.5 \sim 4.8$ $0.4 \sim 0.5$ 0 0 $3 \mu F$ $5.2 \sim 8.0$ $0.5 \sim 0.7$ $0 \sim 0.1$
$R_{s} =$ R_{x} R_{s}	=100 GΩ 100 GΩ 10 GΩ 1 GΩ 100 MΩ 100 MΩ =1 TΩ 100 GΩ 10 GΩ 100 GΩ 100 MΩ	$ \begin{array}{r} 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 1 \text{ nF} \\ 0.1 \sim 4.7 \\ 0 \sim 0.5 \\ 0 \sim 0.1 \\ 0 $	$ \begin{array}{r} 10 \text{ nF} \\ 1.4 \sim 2.8 \\ 0.1 \sim 2.0 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ \hline 0 \sim 0.1 \\ 0 \sim 1.9 \\ 0 \sim 0.2 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ \end{array} $	$\begin{array}{c} C_{x} \\ 100 \text{ nF} \\ 1.5 \sim 3.9 \\ 0.1 \sim 0.4 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ C_{x} \\ 100 \text{ nF} \\ 0.2 \sim 3.1 \\ 0 \sim 0.4 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \\ 0 \sim 0.1 \end{array}$	$ \begin{array}{r} 1 \ \mu F \\ 16.9 \sim 22.0 \\ 1.5 \sim 1.8 \\ 0.1 \sim 0.2 \\ 0 \\ 0 \\ 1 \ \mu F \\ 1.8 \sim 5.8 \\ 0.2 \sim 0.6 \\ 0 \sim 0.1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{r} 3 \ \mu F \\ \hline 75.4 \sim 83.0 \\ 4.5 \sim 4.8 \\ 0.4 \sim 0.5 \\ \hline 0 \\ 0 \\ \hline 0 \\ \hline 3 \ \mu F \\ 5.2 \sim 8.0 \\ 0.5 \sim 0.7 \\ \hline 0 \sim 0.1 \\ \hline 0 \\ \end{array} $

表 3.9 2 点測定法で得られた結果を Rs で補正した値の誤差(5)

[%]

(2) CV ケーブルの水トリー劣化伸展過程を模擬した等価回路での測定範囲の確認

CV ケーブルの主要な劣化形態である水トリーは,発生し伸展することにより絶縁体を 橋絡し,11kV 以下の CV ケーブルでは,橋絡後に運転電圧で絶縁破壊に至ることが確認さ れている⁽⁹⁾。そのため,ケーブル静電容量 C_x に対し,橋絡水トリーの抵抗 R_x,未橋絡水 トリーの抵抗 R_t と未橋絡水トリーの健全部の静電容量 C_t の直列回路が並列に接続された 等価回路で考える必要があり,図 3.14 に示す等価回路で計算し測定範囲を確認した。

図 3.14 水トリー劣化の伸展過程のケーブルでの交流絶縁抵抗測定の等価回路例(5)

ここで、抵抗 R_tと静電容量 C_tの直列回路のアドミッタンスを Y_tとすると、

$$Y_{t} = \frac{\omega^{2} C_{t}^{2} R_{t} + j\omega C_{t}}{1 + (\omega C_{t} R_{t})^{2}} \qquad \dots \qquad (3.26)$$

が得られ、実数部の逆数が抵抗成分、jo を除いた虚数部が容量成分となり、いずれも周波数の関数となる。図 3.14 では、周波数に依存しない R_x および C_x に対して、周波数依存性を示す抵抗 R_t と静電容量 C_t の直列回路が並列に接続されるので、被測定ケーブルの交流絶縁抵抗と静電容量は、(3.26)式の周波数に依存する成分を含む関数で表すことができる。それぞれを $R_x(f)$ 、 $C_x(f)$ とすると、

 $\frac{1}{R_X(f)} = \frac{1}{R_X} + \frac{\omega^2 C_t^{\ 2} R_t}{1 + (\omega C_t R_t)^2} \quad \dots \quad (3.27) \qquad C_X(f) = C_X + \frac{C_t}{1 + (\omega C_t R_t)^2} \quad \dots \quad (3.28)$

となり、(3.27) 式に測定周波数 f_m ($2\pi f_m = \omega_m$), Rx, Rt, Ct を代入して得られる $R_X(f_m)$ の 値が交流絶縁抵抗の理論値となる。

測定対象ケーブルは、6.6kV で 14~1,600mm²の単心形またはトリプレックス形の CV ケ ーブルで 20~1,000m の長さが大半を占め、さらに、3 相一括測定を行うことから、10nF~ 3µF の範囲の静電容量 C_Xを測定対象としている。また、橋絡水トリーが存在し R_Xが大き く低下した場合は、その影響が支配的となり不良判定が得られやすくなるので、敢えて橋 絡水トリーがない状態を模擬し R_X=100GΩ として、バランス調整周波数 f_b=200Hz、測定 周波数 f_m=7.5Hz とし、表 3.10 の条件において次の手順で算出している。

表 3.10 C-R 直列回路を含む試料の測定範囲確認条件⁽⁵⁾

$R_{\rm s} = 1 \ {\rm T}\Omega$	$C_{\rm s} = 10 \ \rm nF$			
$R_{\rm v} = 0.1 \ \Omega \sim 1,000 \ \Omega$	C _v =調整に必要な範囲			
$R_{\rm d} = 3 \ \Omega, \ 6 \ \Omega, \ 12 \ \Omega, \ 25 \ \Omega, \ 50 \ \Omega$	$C_{\rm d} = 10 \ \rm nF$			
$R_{\rm x} = 100 \ {\rm G}\Omega$	$C_{\rm x} = 10 \text{ nF} \sim 3 \mu \text{F}$			
$R_{\rm t} = 0.1 \text{ M}\Omega, 1 \text{ M}\Omega, 10 \text{ M}\Omega, 100 \text{ M}\Omega, 1 \text{ G}\Omega, 10 \text{ G}\Omega, 100 \text{ G}\Omega$				
<i>C</i> _t = 0.01 pF, 0.1 pF, 1 pF, 10 pF, 100 pF, 1 nF, 10 nF, 100n F				

- ①各パラメータの値を(3.27)式および(3.28)式に代入して R_x(f_b), C_x(f_b)および理論値 R_x(f_m)を算出する。
- ②この R_x(f_b), C_x(f_b)と他のパラメータ値を(3.7)式および(3.8)式に代入し B_x, B_yを 算出する。
- ③算出した B_x, B_y, ω_b, C_sの値を(3.15)式および(3.16)式に代入して R_v と C_vを求 め,バランス調整条件を決定する。
- ④算出した Rv の値に対して±0.1%~±5%変化させた時の2つのベクトル電圧 Vm+(X+, Y+), Vm-(X-, Y-)を求め, (3.25) 式を用いて算出した2点測定値Vmと他のパラメータ値を(3.23) 式に代入し, 交流絶縁抵抗測定結果の補正値を算出する。

理論値 R_x(f_m)と2 点測定法で得られた交流絶縁抵抗測定結果の補正値の最小値と最大値, 理論値 R_x(f_m)に対する交流絶縁抵抗測定結果の補正値の最大誤差を表 3.11 に示す。

ここで、1 個の橋絡水トリーは直流漏れ電流測定結果⁽¹⁰⁾より 500 MQ~100GQ 程度の抵抗を示すと考えられ、未橋絡状態では橋絡状態より短くなるため抵抗(\cong R_t) はさらに小さな値を示すと考えられる。また、22kV CV ケーブルで発生した未橋絡水トリーの健全部の静電容量を電界解析で算出した結果、残存絶縁厚 3.45~6.62mm で 0.015~0.016pF 程度で水トリー長の影響が小さいとされている⁽¹¹⁾。6.6kV 用は 22kV 用の半分程度の絶縁厚であるため、健全部の静電容量(\cong C_t) は大きく見積もっても 0.01~0.1pF 程度と想定される。これらより、1 個の未橋絡水トリーは、概ね 500MQ~100GQ 程度の抵抗 R_t と 0.01~0.1pF 程度の静電容量 C_tの直列回路と考えることができる。しかし、未橋絡水トリーは1 個ではなく通常複数存在することから、それらを 1 つの直列等価回路として考えると、表 3.11 の範囲を対象として想定しておく必要がある。

低周波重畳法の高圧 CV ケーブル劣化診断への適用に際しては、 $10M\Omega \sim 10G\Omega$ の交流絶 縁抵抗測定範囲⁽²⁾⁽³⁾⁽⁴⁾で、 $1G\Omega$ 以下の測定誤差±10%以下が要求され、さらに、表 3.2 に示 すとおり、高圧 CV ケーブルの判定基準は、 $1G\Omega$ 以下が要注意、 $400M\Omega$ 以下が不良とされ ている。これらのことに基づき、劣化したケーブルで得られる $10M\Omega \sim 1G\Omega$ の範囲の誤差 に着目すると、 $0.1M\Omega - 10nF / 1M\Omega - 1nF$ の直列回路となる場合に、誤差が 10%を大きく 上回っている。しかし、0.1MΩ-10nFの場合は、45MΩの理論値に対し 74~142MΩの測 定値となり理論値に対する誤差は大きいものの、判定はいずれも不良判定となる。また、 1MΩ-1nFの場合は、449MΩの理論値に対し 732~790MΩの測定値となり高めの値には なるものの、いずれも要注意判定となる。その他、1~100GΩの理論値に対し誤差が大き くなる範囲があるが、いずれも劣化が進んでいないと判定される領域であり、誤差があっ たとしても良判定となることに違いないことが確認できる。したがって、概ね劣化判定に 必要な測定が可能であると言える。

表 3.11 C-R 直列回路を含む試料について 2 点測定法で得られた結果を Rsで補正した値の誤差⁽⁵⁾

			C _t								
			0.01 pF	0.1 pF	1 pF	10 pF	100 pF	1 nF	10 nF	100 nF	
R _t	0.1 MΩ	理論値		100.0	100.0	100.0	99.78	81.83	4.309	0.045	0.001
		測定値	最大値	100.1	100.1	100.1	100.1	100.0	74.79	0.074	0.001
			最小値	105.3	105.3	105.3	105.3	105.2	77.91	0.142	0.001
		最大誤差		5.3%	5.3%	5.3%	5.5%	28.6%	1708%	214%	3.2%
	1 ΜΩ	理論値		100.0	100.0	100.0	97.83	31.05	0.449	0.006	0.001
		測定値	最大値	100.0	100.1	100.1	100.0	96.75	0.732	0.006	0.001
			最小値	105.3	105.3	105.3	105.3	101.6	0.790	0.006	0.001
		最大誤差		5.3%	5.3%	5.3%	7.6%	227%	75.7%	0.9%	0.0%
	10 MO	理論値		100.0	100.0	99.78	81.83	4.318	0.055	0.010	0.010
		测字体	最大値	100.1	100.1	100.1	99.68	6.871	0.055	0.010	0.010
	10 10122	側足胆	最小値	105.3	105.3	105.3	104.9	6.919	0.055	0.010	0.010
		最大誤差		5.3%	5.3%	5.5%	28.1%	60.2%	0.7%	0.0%	0.0%
	100 MΩ	理論値		100.0	100.0	97.83	31.10	0.547	0.104	0.100	0.100
		測定値	最大値	100.1	100.1	100.0	42.46	0.551	0.104	0.100	0.100
			最小値	105.3	105.3	105.2	43.35	0.551	0.104	0.100	0.100
		最大誤差		5.3%	5.3%	7.6%	39.4%	0.7%	0.0%	0.0%	0.0%
	1 GΩ	理論値		100.0	99.78	81.86	5.216	1.034	0.991	0.990	0.990
		測定値	最大値	100.1	100.1	88.08	5.248	1.034	0.991	0.990	0.990
			最小値	105.3	105.3	92.09	5.261	1.035	0.991	0.991	0.991
		最大	誤差	5.3%	5.5%	12.5%	0.9%	0.1%	0.0%	0.0%	0.0%
	10 GΩ	理論値		100.0	97.83	35.50	9.462	9.095	9.091	9.091	9.091
		測定値	最大値	100.1	98.74	35.65	9.463	9.095	9.092	9.092	9.092
			最小値	105.3	103.8	36.29	9.507	9.136	9.133	9.133	9.133
		最大誤差		5.3%	6.1%	2.2%	0.5%	0.5%	0.5%	0.5%	0.5%
	100 GΩ	理論値		99.78	84.62	51.10	50.01	50.00	50.00	50.00	50.00
		測定値	最大値	99.95	84.77	51.12	50.03	50.02	50.02	50.02	50.02
			最小値	105.1	88.47	52.45	51.30	51.29	51.29	51.29	51.29
		最大	誤差	5.4%	4.5%	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%

[GΩ]

過去に AIR を用いた 100 回線程度の測定で劣化が疑われた 36 回線を調査した結果,水 トリー劣化のみならず様々な劣化を検出している⁽⁴⁾こと,さらに,その後 3,000 回線を超え る測定実績においても,水トリー劣化による絶縁破壊事故を見逃した事例がないことから も,劣化診断法として必要な性能を有しているものと考えられる。

なお、特に、未橋絡水トリーにおいては、細いものや太いもの、短いものや長いものが あり、同じ特性を示すものばかりではない。より実態に近い状態で誤差の確認を行うため には、R_t と C_tの様々な組み合わせによる複数の直列回路が並列に接続された等価回路で確 認する必要があり、今後の検討課題である。

3.3.5 AIR の開発によって明らかになった CMLF のさらなる問題点と対策

AIRの開発によって測定原理に基づく測定範囲を明らかにできるようになったことで、 CMLFの測定回路や測定方法に関して、次に示す問題点が新たに確認された。そこで、AIR の開発に合わせ様々な対策を検討した結果、改善を行うことができた。その問題点と対策 について表 3.12 に示す。

問題点	対策
計測部には,低周波電圧を重畳するためのパワーアン	パワーアンプの他重畳信号ライ
プとノイズに埋もれた低周波の微小信号を検出する	ンからの低周波電磁誘導を抑制
回路が内蔵されている。高圧母線に低周波電圧を重畳	するため,図 3.15 に示す部分の
する場合,パワーアンプの出力は最大 5A 程度となる。	信号検出回路を日立金属製ファ
一方, 鉄製のパンチングメタルで壁が設けられている	インメット MS-F を 3 枚重ねた
が, 遮へい効果が不十分で, nA オーダーの微小信号	もので覆うことにより、誘導電
検出回路に低周波磁界による電圧が誘導され,大きな	圧による測定精度の低下を抑制
測定誤差が発生することが確認された。	できるようになった。
重畳トランス,重畳用コンデンサ,標準コンデンサ,	重畳用コンデンサと標準コンデ
高圧スイッチを SF6ガス室内に内蔵しており, 重畳用	ンサの間に静電シールドを設
トランスで昇圧した電圧により,標準コンデンサの低	け,標準コンデンサの低圧側リ
圧側リード線に静電誘導による電圧が発生し,大きな	ード線をすべてシールド付きケ
測定誤差が発生することが確認された。	ーブルに変更するなど、徹底し
	た静電誘導対策を施したことに
※図 3.16 には AIR 用重畳装置の内部の状態を,図 3.17	より、測定精度の低下を抑制す
には内蔵しているコンデンサを示しているが, CMLF	ることができた。
の低周波重畳部も似たような構造となっている。	

表 3.12 CMLF の新たな問題点と AIR で採用した対策

図 3.15 AIR の測定装置の低周波電磁誘導対策

図 3.16 静電誘導対策を行った AIR 用重畳装置内部の状態

(a) 標準コンデンサ (ダブルメタライズドポリプロピレンフィルムコンデンサ)

(b) 重畳用コンデンサ (ポリエステルフィルムコンデンサ)

図 3.17 AIR 用重畳装置内のコンデンサを取り外した状態
3.4 結言

本章では、高圧 CV ケーブルのオンライン診断法である低周波重畳法の開発の背景に触れ、実用化された CV ケーブル活線劣化診断装置 CMLF の概要について説明した。

低周波重畳法は、1988 年(昭和 63 年)当時実用化されていた直流系診断法と交流系診 断法のそれぞれの長所を併せ持ち、それぞれの短所を補うことができるのではないかとい う期待に基づき、劣化検出性能が優れたオンライン診断法の開発を目指して取り組まれた ものであり、1990 年(平成2年)に実用化され、2度の改良を経て1993 年(平成5年)か らオンライン診断法として本格的に運用開始された⁽⁴⁾ことを説明した。また、低周波重畳 法の測定原理、当初の測定装置 CMLF の構成や概要、測定方法関して説明し、実用化によ って明らかになった課題について整理した。

これらの低周波重畳法の課題解決と水トリー劣化の検出性能向上を目的に,著者は交流 絶縁抵抗測定装置 AIR の開発に取り組み,新たな測定原理である交流絶縁抵抗測定法の開 発に至った。また,交流絶縁抵抗測定法の原理および測定方法について説明し,オンライ ン測定システムとオフライン測定システムの測定装置構成について紹介した。

そして、CMLFの課題を解決するために開発した交流絶縁抵抗測定法に関して、測定理 論と測定方法に基づく測定範囲と測定誤差について数値計算による検討を行った。これに より、被測定ケーブル側の検出抵抗 R_dに並列に接続される静電容量 C_dの影響や水トリー 劣化を想定した等価回路での測定範囲を確認することによって、次の結果が得られた。

①ブリッジ回路のバランス調整状態から意図的に標準コンデンサ側検出抵抗 Rv を変化 させた2点で測定し、この2つのベクトル電圧が作る三角形の高さから求めた差動電 圧Vmより、交流絶縁抵抗 Rxを得ることができる。

②上記2点測定法で得られた差動電圧 Vmから交流絶縁抵抗 Rxを得る方法は、被測定ケ ーブル側検出抵抗 Rdに並列に接続される静電容量 Cdの影響による誤差が大きくなる。

しかし,標準コンデンサの交流絶縁抵抗 Rs で補正し被測定ケーブルの交流絶縁抵抗 Rxを算出することによって,その影響を低減できる。

③2 点測定法と標準コンデンサの交流絶縁抵抗 Rsによる補正を組み合わせることで,高 圧 CV ケーブルの劣化診断で必要となる 10GΩ 以下の測定と 1GΩ 以下の測定誤差± 10%以下が概ね実現可能である。

さらに、AIR による測定によって、様々な劣化を検出している⁽⁴⁾こと、水トリー劣化に よる絶縁破壊事故を見逃した事例がないことから、交流絶縁抵抗測定法を適用した AIR は、 高圧 CV ケーブルの劣化診断用の測定装置として必要な性能を有していると言える。また、 AIR の開発で精度の高い測定ができるようになったことによって、低周波における電磁誘 導や静電誘導の影響による測定精度の低下を招くことが顕在化したが、対策を行うことで 測定精度の低下を抑制することができた。 なお、オンライン測定を行う場合には、シース絶縁抵抗 R_{sh}が 10kΩ を下回ると EVT の インピーダンスとわずかな大地抵抗の相互作用で、測定結果の信頼性が低下することや、 EVT の中性点と測定地点間の大地抵抗が大きくなると測定不可能になることが分かって おり、今後、それらの理由についても明らかにする必要がある。

第3章参考文献

- (1) 鹿島脩一・熊井久之:「低周波重畳法による CV ケーブル活線劣化診断法の検討」,昭 和 63 年電気学会 全国大会講演論文集, No.1335 (1988)
- (2) 上島征行・中西公男:「低周波重畳法による CV ケーブル活線劣化診断装置」, OHM, Vol.77, No.5, pp.49-55 (1990)
- (3) 上島征行・山本壽昭:「CV ケーブル活線劣化診断装置の開発」,九州電力研究報告, Vol.73, No.91006 (1991)
- (4) 蒲原弘昭・工藤善則・伊藤彰・速水敏幸・伊藤泰郎:「低周波重畳法による高圧 CV ケーブルの絶縁診断について」,第157回電気材料技術懇談会資料(2)(2001)
- (5) 蒲原弘昭・江原由泰:「電力ケーブルの交流絶縁抵抗測定法に関する検討」, 電気学会 論文誌 A, Vol.140, No.11, pp.508-515 (2020)
- (6) 工藤善則・蒲原弘昭・篠原功・伊藤彰:「交流絶縁抵抗測定法の開発」,平成8年電気 学会電力・エネルギー部門大会,No.558(1996)
- (7) 伊藤彰・蒲原弘昭:「劣化検出装置」,公開特許公報,特開平 8-75689 号(1994)
- (8) 伊藤彰・蒲原弘昭・臼井亮:「絶縁抵抗測定装置」,特許公報,第2573789号(1993)
- (9) 江藤計介・小宮満明・志水善国:「直流重畳法による 11kV 劣化ケーブルの検出」,平成28 年電気学会全国大会講演論文集,No.2-015 (2016)
- (10)蒲原弘昭・工藤善則・篠原功・伊藤彰:「低周波電圧を用いた 6kV 級 CV ケーブルの 絶縁診断における水トリー劣化検出性能」,電気学会論文誌 A, Vol.119, No.6, pp.814-820 (1999)
- (11)岡村博之・元治崇・原田真・淡路貴洋・弘津研一:「22kV CV ケーブルの高調波損失 電流」,電気学会誘電・絶縁材料研究会資料,DEI-98-81 (1998)

第4章 交流絶縁抵抗測定装置 AIR のフィールド適用

4.1 緒言

1993年(平成5年)に交流絶縁抵抗測定法を考案し,翌年に自動測定可能な交流絶縁抵 抗測定装置 AIR の開発に至った。第3章において,交流絶縁抵抗測定法は,等価回路によ る数値計算などにより,低周波重畳法の原理に基づく測定が可能であることを確認した。

AIR の開発により低周波重畳法による配電用高圧 CV ケーブルのオンライン診断用の測 定装置として、当初適用されていた CMLF に加え AIR の2種類が存在することとなった。 しかしながら、AIR のフィールド適用においては、実験室とは異なる環境や系統などの諸 条件の影響確認と、CMLF の課題や問題点の対策を講じた後継機種としての評価が必要で あったので、フィールドでの比較検証試験を実施することとした。

そして、AIR によるオンラインおよびオフライン測定によってフィールドデータを収集 し、得られた結果の分析を行い低周波重畳法の測定装置としての評価を行った。

4.2 測定装置(CMLF と AIR)の比較検証試験

実験室とは異なる環境や系統などの諸条件の影響確認と, CMLF の課題や問題点の対策 を講じた後継機種として AIR の評価を行うために, 6.6kV CV ケーブルの中から, CMLF に よるオンライン測定で不良または要注意判定が得られたもの, さらにノイズなどの影響に より調整不可能で測定できなかったものを 10 回線リストアップし, 2 つの測定装置で比較 検証試験を行った。なお, CMLF では再度のオンライン測定, AIR では初回のオンライン 測定となる。

4.2.1 測定装置の違い

CMLF は充電電流キャンセル方式, AIR は交流絶縁抵抗測定法を適用した測定装置であ り、ケーブルの絶縁体に流れる全電流から低周波成分の損失電流を分離検出し交流絶縁抵 抗を算出するという基本原理は同じである。しかし、充電電流キャンセル方式と交流絶縁 抵抗測定法は、厳密には第3章で説明したような違いがある。また、CMLF と AIR では機 能および性能の違いがあり、それを表4.1 に示す。

この検証試験では、AIR については標準コンデンサを重畳装置に内蔵する前の AIR-IIを 用いており、重畳装置内部での静電誘導による測定誤差発生の心配が全くないタイプであ る。図 4.1 に AIR-IIを用いてオンライン測定する場合の装置構成および回路例を示す。ま た、測定装置の心臓部には、アナログロックインアンプを使用している。現在、フィール ドで使用されているものはディジタルロックインアンプを使用した AIR-IVとなっている。 アナログロックインアンプに比べディジタルロックインアンプの方が、測定時間の短縮と 耐ノイズ性を向上させることができ,さらに,任意の次数の高調波成分の測定が可能とな る点で優れている。

項目	CMLF	AIR-II
測定誤差	手動調整のため,測定誤差が 発生しやすい	自動測定で測定誤差が小さい
耐ノイズ性	測定不可能な場合や,測定結 果に影響を与える場合がある	CMLF で測定不可能な場合で も、大半が測定可能となる
シース絶縁抵抗 の測定範囲	100kΩ以下	10kΩ以下 (AIR-IVは1MΩ以下)
浮遊容量(シースなど) C _d の影響	測定誤差の原因となりやすい	影響をほとんど受けない
長尺ケーブルの測定 (測定可能静電容量)	2μF までは測定可能である が,信頼できる測定は1μFま でとされている	3μF までは信頼できる測定が 可能である
測定電圧		1V 以上で測定可能
測定周波数	7.5Hz のみ測定可能	任意の周波数を選択可能

表 4.1 CMLF と AIR の機能・性能の違い

図 4.1 AIR-IIを用いてオンライン測定する場合の装置構成および回路例

4.2.2 対象ケーブル

表 4.1 に示す 2 つの測定装置の違いを考慮し, CMLF でオンライン測定が実施された結 果,不良または要注意判定が得られたもの,測定不可能であったものの中から,表 4.2 に 示す 10 回線を選定した。なお, No.7 は,ノイズや系統全体の対地インピーダンスの変動 の影響により,電圧の自動調整が上手くできずに測定不可能となったものである。

試験 No.		CMLFによる オンライン測定 結果					
	品種	mm ²	亘長 (m)	端末種別	製造年	布設年月	交流絶縁抵抗
1	Al-CVT	1000	198	耐塩端末	1992	1992/11	ノイズの影響で 測定不可能
2	Cu-CVT	60	35	差込端末	1977	1978/6	214MΩ
3	Cu-CVT	60	22	差込端末	1991	1993/3	656ΜΩ
4	Cu-CVT	60	23	差込端末	1979	1979	200ΜΩ
5	Cu-CVT	60	40	差込端末	1980	不明	調整不可能
6	Al-CVT	500	110	差込端末	不明	1984/1	調整不可能
7	Cu-CVT	725	53	差込端末	1986	1986/12	重畳不可能
8	Cu-CVT	100	41	差込端末	1988	1988/3	調整不可能
9	Cu-CVT	100	53	差込端末	1988	1988/3	調整不可能
10	Cu-CVT	100	55	耐塩端末	1989	1989/3	331MΩ

表 4.2 比較検証試験対象ケーブル一覧

4.2.3 比較検証試験状況

CMLF と AIR の 2 つの測定装置を用いて,表 4.2 に示す 10 回線のオンライン測定を行った。その時の試験状況を図 4.2~4.5 に示す。

図 4.2 は CMLF での測定状況であり,計測部,低周波重畳部,重畳用ケーブル部からなる。充電電流信号のキャンセルなど手動調整が必要となるため,常時測定者が CMLF を操作する必要がある。図 4.3 は AIR-IIでの測定状況であり,測定装置,重畳装置,標準コンデンサ(現在フィールドで使用されている AIR-IVは標準コンデンサを重畳装置に内蔵), 保護装置の強制接地箱,重畳用ケーブル部からなり, CMLF に比べ大掛かりな装置構成と なっている。なお、重畳装置に内蔵されている開閉器を投入した後、測定を開始すれば自動測定を行うので、常時測定者が AIR を操作することなく測定が可能である。

同一のケーブルを異なる2機種の測定システムで測定することになり、測定毎に、重畳 用ケーブルの高圧母線への活線接続→開閉器投入および測定→開閉器開放→高圧母線から 重畳用ケーブルの活線取り外しの作業が必要となり,測定装置や機材の運搬も考慮すると, 測定作業者にとっては過酷な試験となる。

図 4.2 CMLF でのオンライン測定状況

図 4.3 AIR-IIでのオンライン測定状況

図 4.4 は高所での接続状況を示しており,全天候型間接活線操作棒(ホットスティック) を用い,移動用の高圧 CV ケーブルの先端に絶縁電線の絶縁体を剥ぎ取ることなく接続可 能な針電極式の接続機材を取り付けて活線接続を行う。なお,取り外した後の高圧配電線 の絶縁修復にはワンタッチで装着可能な専用の絶縁修復カバー(ポリエチレン製でスリッ トが入った円筒形の内面にブチルゴムのパテが貼り付けられているもの)を使用する。ま た,被測定ケーブル接地線には3相一括して測定装置に信号を取り込むケーブルのリード 線を接続し,測定装置を介して接地される状態にした後測定を開始する。

(a) 高圧配電線への活線接続状況(針電極式接続機材使用)

⁽b) 被測定ケーブル接地線への接続状況(3相一括)

図 4.4 高所での接続状況

図 4.5 はマンションやビルなどの借室での接続状況を示しており,高所での活線接続と 同様,移動用の高圧 CV ケーブルの先端に針電極式の接続機材を取り付けて全天候型間接 活線操作棒(ホットスティック)を用いて活線接続を行う。絶縁修復も高所の場合と同様 専用の絶縁修復カバーを使用する。また,この例では,被測定ケーブルの接地線が各相個 別に接続されているので,3 相一括接続状態にした上で信号を測定装置に取り込むケーブ ルのリード線を接続し,測定装置を介して接地される状態にした後測定を開始する。

(a) 高圧絶縁電線への活線接続状況(針電極式接続機材使用)

(b) 被測定ケーブル接地線への接続状況(3相一括)

図 4.5 借室での接続状況

4.2.4 比較検証試験結果

比較検証試験の結果を表 4.3 に示す。

10回線の測定の中で、CMLF で測定できなかった 8回線すべてで AIR による測定が可能となっている。CMLF で測定できなかったところのほとんどが AIR で測定可能となり、 大きな改善効果をもたらすことを確認できる。

なお,再測定を行った No.3 および No.4 の 2 回線については,地中化地域への電力供給 系統であったため,ケーブルの対地静電容量の影響を抑制するために,中性点にリアクト ルが接続されていた。通常電力会社の 6.6kV の配電系統では,零相電圧を検出するため対 地間に EVT (接地形計器用変圧器)が接続されている。1 次側はスター結線し中性点を接 地され、3 次側をオープンデルタまたはブロークンデルタと言われデルタ結線の一端を開 放し制限抵抗 r₀ が接続されている。一般的に 6.6kV クラスでは 50 Ω の制限抵抗 r₀ が接続 されているので,中性点の接地インピーダンスが 3 相一括で 20k Ω (=r₀×n²/9) となって いる。しかし、この EVT と並列にインピーダンスの小さなリアクトルが接続されると、周 波数が低くなるほど所定の低周波電圧が重畳できず、測定結果への影響も懸念されたため、 後日他の系統からの供給に切り替えて再測定を行った。

比較検証試験の結果について次に説明する。

			松訂	F H.	陸		CMLFによる	ļ				
試験 No.			使武	9 - 7 JUL	17		スノワイン側正 結果	CMLFによる測	定結果	AIR- II による測定	官結果	劣化状況 調査結果
	品種	mm ²	亘長 (m)	端末種別	製造年	布設年月	交流絶縁抵抗	交流絶縁抵抗	判定	交流絶縁抵抗	判定	
1	Al-CVT	1000	198	耐塩端末	1992	1992/11	ノイズの影響で 測定不可能	調整不可能	判定不能	294ΜΩ	不良	端末の 絶縁低下
2	Cu-CVT	60	35	差込端末	1977	1978/6	214MΩ	127ΜΩ	不良	91.7MΩ	不良	橋絡水トリー 発生
2	Cu-CVT	60	22	差込端末	1991	1993/3	656ΜΩ	信号重畳不可能	判定不能	111 ΜΩ	不良	
3	5 中性点にリアクトルが接続されない条件での					ない条件で	ぎの再測定結果⇒	10,000MΩ以上	良	3,350MΩ	良	_
4	Cu-CVT	60	23	差込端末	1979	1979	200ΜΩ	信号重畳不可能	判定不能	4.61MΩ	不良	橋絡水トリー
4		中	性点に	リアクトルが	接続され	ない条件で	ぎの再測定結果⇒	10,000MΩ以上	良	395MΩ	不良	発生
5	Cu-CVT	60	40	差込端末	1980	不明	調整不可能	調整不可能	判定不能	10,000MΩ以上	良	-
6	Al-CVT	500	110	差込端末	不明	1984/1	調整不可能	調整不可能	判定不能	10,000MΩ以上	良	-
7	Cu-CVT	725	53	差込端末	1986	1986/12	重畳不可能	調整不可能	判定不能	10,000MΩ以上	良	_
8	Cu-CVT	100	41	差込端末	1988	1988/3	調整不可能	調整不可能	判定不能	10,000MΩ以上	良	-
9	Cu-CVT	100	53	差込端末	1988	1988/3	調整不可能	調整不可能	判定不能	10,000MΩ以上	良	-
10	Cu-CVT	100	55	耐塩端末	1989	1989/3	331MΩ	848MΩ	要注意	285ΜΩ	不良	橋絡水トリー 発生

表 4.3 比較検証試験結果一覧

(1) CMLF で測定不可能であったケーブルについて

No.1 はノイズの影響で調整が不可能となったもので,測定周波数付近の低周波ノイズ または高調波ノイズの影響と考えられる。

No.5, 6, 7, 8, 9の5回線は、ノイズ以外の影響で測定不可能となったもので、AIR では測定可能であった。原因としては、被測定ケーブル遮へい層と対地間に存在する静 電容量 C_d (シースの対地静電容量を含む)の影響で被測定ケーブルに流れる電流の位相 ずれが大きくなりすぎていたために、充電電流分を上手くキャンセルできなかったもの と考えられる。

No.3,4の2回線は、中性点に接続されているリアクトルの影響で20Vの低周波電圧 を重畳ができなかったために測定不能となったものである。これは、CMLFが20V程度 の電圧が重畳できないと測定誤差が大きくなるので、測定できないように設定されてい るためである。しかし、測定時に電力供給系統を切り替えて、20Vの低周波電圧が重畳 できるようにすると、このような問題は解消できることを確認できた。

(2)2つの測定装置で同等の結果が得られたケーブルについて

No.2 では、いずれの測定においても 100MΩ 前後で同等の結果が得られており、比較 的測定環境および条件が良いものと考えられる。

(3) 両端に耐塩害終端接続部(耐塩端末)が施されたケーブルについて

No.1, 10 では、ケーブル両端に磁器がいし製の耐塩害終端接続部が施されており、AIR での測定ではいずれも 300MΩ 弱で不良という結果が得られている。これについては別途調査が必要であるが、ケーブルの劣化ではなく、終端接続部の主要材料である磁器や 絶縁混和物などの端末処理材料の特性に起因している可能性が考えられる。

(4) リアクトルの影響について

No.3,4の2回線については、地中化地域へ電力を供給する系統のため配電線の対地 静電容量が大きくなっており、その影響を抑制する目的で系統の中性点にリアクトルが 接続されている。測定回路から見ると重畳電源に並列に接続されるため影響は小さいと 考えられたが、リアクトルが位相を遅らせることによって、見かけの損失電流が増加す ることが考えられたため、PSpiceによるシミュレーションを行い、影響の有無およびそ の程度を確認した。

6.6kV 側の中性点に 0.722~5.053H の可変リアクトルが接続されることになることから,図 4.6 の等価回路でシミュレーションを行った。シミュレーション結果を表 4.4 に示す。

図 4.6 中性点にリアクトルが接続された場合の等価回路

	去达她包托 拉 D		
リアクトルL	接地抵抗r1~5	遮へい層の対地静電容量Cd	一 父流祀稼抵抗RX
(H)	(Ω)	(nF)	(10122)
		0	1,000
	0	10	1,000
		100	1,000
		0	1,000
0.722	0.1	10	266
		100	35
		0	1,000
	1	10	36
		100	4
		0	1,000
	0	10	1,000
		100	1,000
		0	1,000
3.000	0.1	10	601
		100	131
		0	1,000
	1	10	131
		100	15
		0	1,000
	0	10	1,000
		100	1,000
		0	1,000
5.053	0.1	10	718
		100	202
		0	1,000
	1	10	202
		100	25

表 4.4 リアクトルが測定結果に及ぼす影響のシミュレーション結果

シミュレーション結果を見ると測定する系統の対地間にリアクトルがある場合には, 遮へい層の対地静電容量(浮遊容量)およびわずかな接地抵抗の存在で測定誤差が生じ ることが分かる。リアクトルを介して大地に流れる電流は電圧に対して位相が 90°遅れ ており,この電流が遮へい層の対地静電容量(シースの静電容量を含む)に流れること によって今度は位相が 90°進み,結果的に印加した電圧と同位相となる成分の電流が検 出抵抗へ流れ込むことで,損失電流と見なされ測定誤差が生じるのではないかと考えら れる。

各部の接地抵抗や遮へい層の対地静電容量が完全にゼロであればリアクトルに流れ る電流の影響を受けないが、現実的にはあり得ないことであるため、対地間にリアクト ルが接続されている系統でのオンライン測定は不可能ということになる。ただし、リア クトルに対して低周波電源が直列に入る回路構成で電圧を重畳(リアクトルの中性点か ら重畳)できれば、これらの影響がなくなり測定可能になるものと考えられる。

(5) リアクトルが接続されない条件で再測定した No.3, 4 の結果について

No.3の再測定結果は、CMLF で 10,000MΩ 以上、AIR で 3,350MΩ といずれも良判定と なった。しかし、抵抗値で見ると違いを感じる差である。この差については、CMLF の 測定精度からすると上限は 3,000MΩ 程度であることから、これを上回る範囲については 測定結果の再現性が乏しい(測定精度が低下する)ために、生じたものと考えられる。 また、リアクトルが接続されない条件で事前に CMLF でオンライン測定した結果、 656MΩ と要注意判定であったものが良判定になっていることについては、水トリー劣化 特有の劣化信号の変化の影響も考えられるが、CMLF の測定誤差および調整誤差の影響 が大きいのではないかと考えられる。

No.4 の再測定結果は, CMLF では 10,000MΩ 以上で良判定, AIR では 395MΩ で不良 判定となった。このケーブルに関しては, 仕様, 布設状況, 過去の測定結果や測定装置 の性能から次のことがあげられる。

- ① ケーブルは水トリーが発生しやすいとされている構造(T-T または E-T タイプ)の もので, 布設後 19 年経過している。
- ② 図 4.7 に示すように、No.4 のケーブルが布設されている電線管には水が入っていると考えられ、水トリー劣化が進んでいる可能性がある。
- ③ リアクトルが接続されない条件で,事前に CMLF でオンライン測定した結果が, 200MΩ で不良判定であった。
- ④ CMLF はケーブル遮へい層の対地静電容量(シースの対地静電容量を含む) C_dの 影響をキャンセルできないため、この影響が大きくなると正確な測定ができなく なる。

その後,当該ケーブルは撤去され劣化状況調査が行われた結果,水トリー劣化が発生・ 伸展していたという報告を受けた。したがって,低周波重畳法によるオンライン診断結果 としては不良判定が正しく,AIRによる測定結果の信頼性が高いことが明らかになった。

(a) 屋外電柱立ち上り部の電線管端部 (b) 借室内ケーブル引込み部分(流水痕あり) 図 4.7 No.4 のケーブルの布設状況

4.2.5 比較検証試験のまとめ

比較検証試験の結果,AIR の適用により,耐ノイズ性の向上,測定不能箇所の減少,測 定結果の信頼性向上に伴う劣化検出性能の向上などの効果があることを確認することがで きた。また,この検討において,対地間にリアクトルが接続されている系統では,リアク トルの影響により,信頼性のある測定結果が得られないことを明らかにすることができた。

4.3 フィールドデータの収集と分析

AIR によるオンラインまたはオフライン測定のデータ収集を行い,要注意または不良判 定が得られたケーブルの一部について調査を実施している。オンライン測定を行ったもの については,21回線の6.6kV CV ケーブルと3回線の3.3kV CV ケーブルについて,オフラ イン測定を行ったものについては,5回線の6.6kV CV ケーブルと6回線の3.3kV CV ケー ブルについて調査を実施した⁽¹⁾。

調査は、AIR による測定終了後、直流漏れ電流測定、交流破壊試験、劣化状況調査の順 に実施しており、諸事情により実施できなかったものや抜取りで実施したものも含まれる。

4.3.1 オンライン測定

表 4.5 に要注意または不良判定が得られた 6.6kV CV ケーブル 21 回線と 3.3kV CV ケーブル 3 回線の合計 24 回線についての調査結果の一覧を示す。

						/loci	交	流絶縁	抵抗	直	流漏れ	電流	交流	破壞試験	
No.	電圧 (kV)	利	重類	サイズ (mm ²)	長さ (m)	殿 造	重畳 雪田	測定 結里	判定	印加	結果	判定	破壊	備孝	务化状況および 要注意・不良判定
	(KV)			(11111)	(111)	年	(V)	//□/へ (MΩ)	TILE	(kV)	(μΑ)	TILE	电/工 (kV)	1/11.77	の原因
1	6.6	CV	E-T	38	44	1972	20	53	不良	6	290	不良	10	_	橋絡水トリー
2	6.6	CVT	E-T	60	30	1979	20	354	不良	10	5.18	不良	23	—	橋絡水トリー
3	6.6	CVT	E-T	60	65	1980	20	295	不良	10	6.31	不良	15	—	橋絡水トリー
4	6.6	CVT	T-T	60	90	1976	20	307	不良	7	255	不良	17	—	橋絡水トリー
5	6.6	CVT	E-T	400	260	1980	20	1.9	不良	-	-	—	4	一週間後 絶縁破壊	橋絡水トリー
6	6.6	CVT	E-T	500	230	1984	20	154	不良	10	4.65	不良	—	_	橋絡水トリー
7	6.6	CVT	E-T	500	639	1979	20	14.3	不良	10	5.39	不良	16	抜取試験	橋絡水トリー
8	6.6	CV	T-T	725	13	1972	20	218	不良	5	1.88	不良	10	—	橋絡水トリー
9	6.6	CV	T-T	725	15	1975	20	129	不良	_	_	—	30	抜取試験	未橋絡水トリー 銅テープ腐食
10	6.6	CV	E-T	1,600	10	1978	20	642	要注意	10	0.01	良	30	_	未橋絡水トリー
11	6.6	CV	PET-T	500	33		20	169	不良	_	—	—	25	抜取試験	熱劣化 銅テープ腐食
12	6.6	CV	T-T	600	24		20	83	不良	-	-	_	30	抜取試験	熱劣化銅テープ腐食
13	6.6	CV	E-T	22	5	1989	20	864	要注意	8	0.42	要注意	30	—	施工不良
14	6.6	CV	E-T	22	6	1989	20	648	要注意	8	6.2	不良	31	—	施工不良
15	6.6	CV	E-T	1,600	21	1987	20	280	不良	-	—	—	36	抜取試験	施工不良
16	6.6	CV	E-T	1,600	21	1987	20	281	不良	—	—	—	—	—	施工不良
17	6.6	CV	E-T	1,600	25	1987	20	314	不良	_	—	—	_	—	施工不良
18	6.6	CV	E-T	1,600	25	1987	20	585	要注意	—	—	—	—	_	施工不良
19	6.6	CV	T-T	22	3	1976	20	421	要注意	8	0.25	要注意	21	—	ストレスコントロールチューフ 白濁リング
20	6.6	CVT	E-E	200	385	1990	20	37	不良	10	0.01	良	—	—	ストレスコントロールテーフ゜
21	6.6	CVT	E-E	325	85	1990	20	152	不良	10	0.01	良	_	_	ストレスコントロールテープ
22	3.3	CV	E-T	325	10	1972	20	0.04	不良	1	53	不良	7	_	橋絡水トリー
23	3.3	CV		500	14	1984	20	245	不良	10	0.01	良	30	—	銅テープ下にクラフト紙
24	3.3	CVT	—	150	35	1981	20	118	不良	10	0.01	良	32	—	銅テープ下に不織布

表 4.5 オンライン測定で要注意・不良判定が得られたケーブルの調査結果

図 3.12 または図 4.1 に示すように電力会社の 6.6kV 配電系統では零相電圧 V_0 を検出す るため対地間に EVT が接続されているので、3 相一括して低周波を含む交流電圧を重畳す ると零相電圧 V_0 が上昇する。図 4.8 に示すように 3 相一括して同位相の交流電圧を印加す ると、EVT の 1 次側の各相の対地間に電圧 E が生じるので、3 次側の各相の線間電圧 Va、 Vb、Vc は 1 次側の 1/n の同じ大きさで同位相の電圧が発生する。そのため、零相電圧 V_0 は重畳電圧 E の 3/n の大きさとなる。

図 4.8 配電系統での EVT 接続例(1次側と3次側巻線を記載)

電力会社の 6.6kV 配電系統では,変圧比 60:1 の EVT が使用され 3/60=1/20 の零相電 $E V_0 上昇が生じるので,重畳電圧 E=20V の場合には 1V の V_0 上昇が発生することにな$ $る。なお、<math>V_0$ の制限電圧を設定することにより地絡事故の検出を行うようになっており、 低いところでは 10V 程度に設定されているところもあるため、オンライン測定のための低 周波電圧重畳によるリレーの誤動作防止の観点で,重畳電圧 E は 20V までとしている。ま た、3.3kV 配電系統では、変圧比 30:1 の EVT が使用されるので、重畳電圧 E=20V の場 合には 2V の V₀ 上昇が発生することになる。

(1) 水トリー劣化していたケーブルについて

橋絡水トリーが確認された No.1~8,22 において,直流漏れ電流測定を行ったものはす べて不良判定,交流破壊電圧を確認したものは23kV以下と低く,AIR による交流絶縁抵 抗のオンライン測定結果はすべて不良判定で妥当な結果が得られていると言える。図4.9 に No.8 のケーブルの絶縁破壊箇所のスライス写真を示す。また,No.5 については1.9MΩ という結果が得られた一週間後に運転中に絶縁破壊を起こしており,一つの寿命限界を示 す結果と考えることができる。

図 4.9 No.8 の 6.6kV ケーブルに発生していた橋絡水トリーでの絶縁破壊(10kV)箇所

さらに、3.3kV CV ケーブルで橋絡水トリーが確認された No.22 は、0.04MΩ と非常に低い交流絶縁抵抗を示し、橋絡水トリーの部分において 7kV で絶縁破壊を起こしている。図4.10 にその絶縁破壊箇所のスライス写真を示すが、絶縁破壊による炭化が不明瞭になるほど大きく密に成長した橋絡水トリーとなっている。このことから、3.3kV では水トリー劣化が相当進行しても運転電圧に耐えられるものがあることが分かる。

次に、未橋絡水トリーが確認された No.9, 10 については、直漏れ電流測定で良判定、交流破壊電圧が 30kV と同等で高いとは言えないことから、直流漏れ電流法では未橋絡水ト

1.00mm/div

図 4.10 No.22 のケーブルに発生していた橋絡水トリーでの絶縁破壊(7kV)箇所

図 4.11 No.10 のケーブルに発生していた未橋絡水トリーでの絶縁破壊(30kV)箇所

リーの検出が困難であることを改めて確認できる。図 4.11 に No.10 のケーブルの絶縁破壊 箇所のスライス写真を示す。AIR による交流絶縁抵抗のオンライン測定では, No.9 が不良 判定, No.10 が要注意判定となっている。No.9 では遮へい銅テープの腐食も生じているこ とから,絶縁体と接地線間の抵抗増加による静電容量と抵抗の直列回路が形成され増加し た損失電流が,水トリー劣化による損失電流に加算されたためと考えている。

(2) 熱劣化および遮へい銅テープの腐食が確認されたケーブルについて

No.11, 12 は,熱劣化と遮へい銅テープの腐食により交流破壊電圧が25~30kV と低下し ており,AIR による交流絶縁抵抗のオンライン測定で得られた不良判定は妥当な結果と考 えることができる。遮へい銅テープの腐食の影響もあるが,熱劣化はポリエチレン分子鎖 の切断による極性基の増加を招き,誘電損失(損失電流)が増加するため低い交流絶縁抵 抗が得られたのではないかと考えられる。No.11 の熱劣化および遮へい銅テープの腐食状 況を図4.12 に示す。 なお,この 6.6kV CV ケーブルは内部半導電層がなく PET (ポリエチレンテレフタレート)テープが導体上に巻かれ,外部半導電層がテープで形成されており,最近の CV ケーブルでは見られない構造であった。

図 4.12 熱劣化と遮へい銅テープの腐食が確認された No.11 のケーブルの解体状況(1)

(3) 施工不良が確認されたケーブルについて

AIR による交流絶縁抵抗のオンライン測定で要注意・不良判定が得られる原因として, 比較的多いのが No.13~18 の施工不良によるものである。No.13 のケーブル終端接続部の 施工不良の状況を図 4.13 に示す。施工不良のすべてにおいて,図 4.13 および図 4.14 に示 すようにストレスコーンが遮へい層の途中から形成され,ストレスコーンが遮へい層端部 の電界緩和の役割を十分に果たすことが出来ず,部分放電の発生や部分放電劣化の進行に よる損失電流の増加が影響したものと考えている。

図 4.13 ストレスコーンが遮へい銅テープ上まで差し込まれた No.13 のケーブル終端接続部⁽¹⁾

(a) 正常にストレスコーンが形成された場合

(b) 遮へい層上からストレスコーンが形成された場合

図 4.14 ケーブル終端の電界緩和処理部の電気的ストレス(1)

(4) ケーブルおよび接続部に使用される材料の影響について

2.3.2 項でも構造や材料の影響で劣化による絶縁性能評価ができない場合があることに ついて説明しているが、ケーブルの劣化とは関係なく AIR による交流絶縁抵抗のオンライ ン測定で要注意・不良判定が得られるものがある。No.19~21 では、接続部の遮へい層端 部の電界緩和に、導電性または半導電性材料を使用したストレスコーンではなく、高誘電 率・低抵抗率の材料を使用したストレスコントロールテープやチューブ(図 2.15(a))が使 用されており、接続部で生じる損失電流が大きくなるために低い交流絶縁抵抗が得られる ものと考えられる。

ストレスコントロールテープやチューブが施されているか否かは,終端接続部の形状を 見ることで確認できる場合があるが,このタイプの端末処理が施されているもので劣化が 生じると,AIR による交流絶縁抵抗のオンライン測定では劣化を区別することが困難とな る。No.19 はストレスコントロールチューブが施されたケーブルで,白濁リングによる劣 化が進み交流破壊電圧が 21kV まで低下しており,直流漏れ電流測定での劣化判定が必要 となることが分かる。白濁リングとは,導体または遮へい層側に水分が存在する状態で使 用されると,通電電流の変化や周囲温度の変化によって XLPE 絶縁体内に水分の浸入・拡 散が起こり,水分の多い部分が形成され白く濁って見える円環状の領域で,乾燥させると 消失するものである。白濁リング形成部で絶縁破壊を起こした絶縁体のスライス写真を図 4.15 に示す。なお,絶縁破壊を起こしていない部分の白濁リングは円環状に見えるが,絶 縁破壊によって水分が消失し円環状の白濁リングとして見えなくなったものである。

図 4.15 白濁リングにより 21kV で絶縁破壊を起こした絶縁体(1)

ケーブル自体劣化していなくても AIR による交流絶縁抵抗のオンライン測定で要注意・ 不良判定が得られる他の事例として, 遮へい銅テープの下に XLPE 絶縁体に比べ誘電損失 の大きいクラフト紙や不織布が施されている No.23, 24 の 3.3kV のケーブルがあり, 一例 を図 2.14 に示している。これは, 遮へい銅テープと絶縁体の間で生じる介在物の誘電損失 や接触抵抗の影響によるものと考えられ, 直流漏れ電流測定による劣化判定が必要となる。

4.3.2 オフライン測定

表 4.6 に要注意または不良判定が得られた 6.6kV CV ケーブル 5 回線と 3.3kV CV ケーブル 6 回線の合計 11 回線についての調査結果の一覧を示す。なお、ケーブル No.は、表 4.5 に示したオンライン測定の調査結果からの連番としている。また、ここでの交流絶縁抵抗での劣化判定は、20V の低周波電圧を重畳しオンライン測定した時の判定基準に基づき、オフラインで 20V の印加で得られた交流絶縁抵抗で判定している。

						生山	交	交流絶縁抵抗			直流漏れ電流測定			なないいになった。トイド				
No.	電圧 (kV)	種	類	サイス [*] (mm ²)	長さ (m)	殿 造 年	印加 電圧 (V)	測定 結果 (MΩ)	判定	印加 電圧 (kV)	結果 (µA)	判定	破壊 電圧 (kV)	男化状況わよい 要注意・不良判定 の原因				
25	6.6	CV	F-T	1 600	20	1978	20	361	不良	4	キック有	不良	_	棒終水いー				
23	0.0	<u> </u>		1,000	20	1770	1,000	246			-1777-FI	1112		11月7日7月7日 7				
26	6.6	CV	E-T	1,600	90	1989	20	101	不良	-	—	—	—	シースのシュリンクバック 遮へい層内浸水				
27	6.6	CV	F-T	1 600	90	1989	20	103	不良	_	_	_		シースのシュリンクバック				
21	0.0	<u> </u>	L-1	1,000		1707	20	105	1112					遮へい層内浸水				
28	6.6	CV	E-T	1 600	40	1992	20	449	要注音	10	0.31	更注音	—	ストレスコントロールチューフ				
	0.0	<u> </u>	<u> </u>	1,000		1772	1,000	306	又口心		0.01	又口心						
29	6.6	CV	E-T	800	10	1990	20	105	不良	10	0.01	良	—	ストレスコントロールチューブ				
30	33	CV	БТ	325	10	1072	20	7.8	不良	1	53	53 不自	7	香約水トII-				
	5.5	<u> </u>	L-1		10	1772	1,000	0.12				1112	/					
21	2.2	CV	БТ	ат 325	150	1972	20	2.5	不白	2	2,000	不白		「蚕奴」を同一				
51	5.5	<u> </u>	L-1	525	150		1,000	0.08	112		以上	人上 110		「同が百万へ」ン				
22	2.2	CV	БТ	225	400	400	400	400	400	1075	20	4.3	プロ	2	17	不白		「蚕奴」を同一
52	5.5	CV.	L-1	525	400	1975	100	4.1	小皮	3	5 1.7	小民	_	間府ノハトリー				
22	2.2	CV	ст	225	400	1075	20	60.6	不占	2	2,000	不白		长幼山川				
33	5.5	CV	Е-1	525	400	19/3	1,000	12.6	个艮	3	以上	小良	_	間府ハトリー				
				200			20	210										
34	3.3	CV	E-T	200	320	1982	20	32	不良	—	—	—	—	橋絡水トリー				
				+600			20	7										
			E-T	-T 200			20	320										
35	3.3	CV			320	1982	20	10	不良		_	-	—	橋絡水トリー				
			+600			20	7											

表 4.6 オフライン測定で要注意・不良判定が得られたケーブルの調査結果

オンライン測定においては対地間に EVT などの接地機器が接続されているが,図 3.13 に示すように,オフライン測定では接地機器を測定回路から切り離し,他の機器の影響が 測定結果に表れないようにした測定が可能となる。そのため、シース絶縁抵抗の低下や大 地抵抗の影響を受け難くした測定や印加電圧などの条件を変化させた測定が可能となる。

同じ試料で複数の印加電圧がある No.25, 28, 30~33 については電圧依存性を確認した ものであり,同じ印加電圧で複数の測定結果がある No.34, 35 については,毎年夏季に測 定を行い交流絶縁抵抗の変化を確認したものである。

(1) 橋絡水トリーが確認されたケーブルについて

橋絡水トリーが確認された No.25 の 6.6kV のケーブルと No.30~35 の 3.3kV のケーブル については、AIR による交流絶縁抵抗のオフライン測定ではすべて不良判定であり妥当な 結果が得られている。直流漏れ電流測定を行った No.25 の 6.6kV のケーブルおよび No.30 ~33 の 3.3kV のケーブルについては、比較的低い電圧で不良と判断できる大きな漏れ電流 やキック現象が確認されており、劣化が進行していたものと考えられる。

No.30 について、オンラインで測定した結果が表 4.5 に示す No.22 であり、20V の重畳ま たは印加電圧で比較すると、オンライン測定で 0.04MΩ、オフライン測定で 7.8MΩ となり、 水トリー劣化に関してはオンライン測定での劣化検出性能が高くなるものと考えられる。 また、電圧依存性を確認した No.25、28、30~33 については、橋絡水トリーの存在によって印加電圧が高くなるほど交流絶縁抵抗が低下する傾向が確認されることから、交流絶縁抵抗の電圧依存性から水トリー劣化の有無を判定できる可能性が高いことが分かる。なお、印加電圧の範囲としては、100V までの印加とした No.32 では電圧依存性が明確ではないことから、20~1,000V の範囲で電圧依存性を確認するのが妥当であると考えられる。

さらに, No.34, 35 の橋絡水トリーが確認されたケーブルでは,3 年間の交流絶縁抵抗の 変化を確認しているが,水トリー劣化の伸展に伴う交流絶縁抵抗の低下が確認できる。

(2) シースのシュリンクバックにより遮へい層内に浸水していたケーブルについて

No.26, 27 は、屋外の終端接続部においてビニルシースのシュリンクバックが発生し遮 へい層内への浸水と遮へい銅テープおよび外部半導電層の半導電性テープのずれが生じ絶 縁体の一部が露出していたものである。オフラインで交流絶縁抵抗を測定しているため部 分放電の発生による損失電流増加の影響は受けていないが、部分放電劣化や遮へい銅テー プの腐食および水トリー劣化などによる損失電流の増加により、低い交流絶縁抵抗が得ら れ不良判定となったものと考えられる。水トリー劣化の電圧依存性の有無を確認できてい れば、劣化の種類を区別できた可能性があったのではないかと考えられる。

(3) ケーブルの接続部に使用される材料の影響について

2.3.2 項および 4.3.1 項(4)でも説明しているようにケーブルの劣化との関係は明確ではな いが, No.28, 29 では, AIR による交流絶縁抵抗のオフライン測定で要注意・不良判定が 得られている。これは,終端接続部の遮へい層端部の電界緩和に,導電性または半導電性 材料を使用したストレスコーンではなく,高誘電率・低抵抗率の材料を使用したストレス コントロールチューブが使用されたことにより,接続部で生じる損失電流が大きくなるこ とが原因と考えられる。

なお, No.28 については, 直流漏れ電流測定で要注意判定となり, 印加電圧の上昇に伴って交流絶縁抵抗が低下する特性が確認されていることから, 水トリー劣化が生じている可能性が考えられる⁽²⁾。一方, No.29 については, 交流絶縁抵抗の電圧依存性を確認していないが直流漏れ電流測定で良判定であることから, 水トリー劣化の可能性は小さいものと考えられる。

4.3.3 フィールドデータに基づく劣化検出性能に関する検討

前項で確認した結果より、オンラインでの交流絶縁抵抗測定、またはオフラインで交流 絶縁抵抗の電圧依存性を確認することで、水トリー劣化の検出が可能であることが分かる。 また,遮へい銅テープの腐食や熱劣化,施工不良の検出も可能と考えられ,AIR の適用に よって優れた診断法を実現できることが分かる。

しかしながら、ケーブルの構成材料や接続部の電解緩和処理に使用されている材料の影響などで、劣化との区別が難しくなる場合があることが明らかになった。特に、交流絶縁 抵抗の電圧依存性を確認できないオンライン測定では劣化と材料などによる影響の区別が 困難になるので、オフラインでの交流絶縁抵抗の電圧依存性確認と直流漏れ電流測定を組 み合わせた診断法を適用した方が、劣化判定の信頼性が高くなるものと考えられる。

ここで, 6.6kV CV ケーブルについて,表 4.5 に示した AIR による交流絶縁抵抗のオンラ イン測定結果と交流破壊電圧の関係を図 4.16 に示す。水トリー劣化によるものは,交流絶 縁抵抗が低いものほど,交流破壊電圧が低くなる傾向がある。しかし,熱劣化や遮へい銅 テープの腐食,あるいは施工不良の場合は,一部抜き取り試料での結果ということもある が,交流絶縁抵抗に依存して交流破壊電圧が低下する傾向があるとは言えない。

低周波重畳法によるオンライン診断は,水トリー劣化,熱劣化,遮へい銅テープの腐食 など様々な劣化が検出できることを確認できた。さらに,水トリー劣化に関しては,交流 破壊電圧との高い相関が得られている。しかし,熱劣化や遮へい銅テープの腐食,施工不 良なども含めた上での交流破壊電圧や余寿命との相関となると,さらなる検討が必要とな る。

▲水トリー+銅テープ腐食

×水トリー

交流絶縁抵抗活線測定結果 $(M\Omega)$

図 4.16 AIR による交流絶縁抵抗のオンライン測定結果と交流破壊電圧の関係⁽¹⁾

4.4 結言

1994年(平成6年)に交流絶縁抵抗測定装置 AIR を開発したことにより,低周波重畳法 による配電用高圧 CV ケーブルのオンライン診断用の測定装置として,当初適用されてい た CMLF に加え AIR の2種類が存在することとなった。

AIR のフィールド適用においては、実験室とは異なる環境や系統などの諸条件の影響確認と、CMLF の課題や問題点の対策を講じた後継機種としての評価が必要であったので、フィールドでの比較検証試験を実施した。比較検証試験の対象ケーブルとして、CMLF によるオンライン測定で不良・要注意判定が得られたもの、ノイズの影響などで測定できなかったものを 10 回線リストアップし、2 つの装置でオンライン測定を行った。その結果、AIR の適用により、耐ノイズ性の向上、測定不能箇所の減少、測定結果の信頼性向上に伴う劣化検出性能の向上などの効果が期待できることを確認した。さらに、この検証試験によって、対地間にリアクトルが接続されている系統では、リアクトルの影響により、信頼性のある測定結果が得られないことを明らかにすることができた。

次に, AIR によるオンラインおよびオフライン測定によってフィールドデータを収集し, 低周波重畳法の測定装置としての評価を行った。その結果, AIR を用いた交流絶縁抵抗測 定によるオンラインまたはオフライン診断は,水トリー劣化のみならず,熱劣化,遮へい 銅テープの腐食,施工不良などの異常による事故の未然防止につながる可能性が高いこと を明らかにした。一方で,熱劣化や遮へい銅テープの腐食,施工不良なども含めた上での 交流破壊電圧や余寿命との相関については,さらなる検討が必要であることを示した。

本章で検討した比較検証試験やフィールドデータの結果より,AIR による交流絶縁抵抗 の測定によって様々な劣化を検出できることが分かった。特に,水トリー劣化に関しては, 得られる結果と劣化程度との高い相関も期待されることから,次章において,水トリー劣 化の検出性能について詳しく検討することとする。

第4章参考文献

- (1) 蒲原弘昭・工藤善則・伊藤彰・速水敏幸・伊藤泰郎:「低周波重畳法による高圧 CV ケーブルの絶縁診断について」,第157回電気材料技術懇談会資料(2)(2001)
- (2) 蒲原弘昭・工藤善則・篠原功・伊藤彰:「低周波電圧を用いた 6kV 級 CV ケーブルの 絶縁診断における水トリー劣化検出性能」,電気学会論文誌 A, Vol.119, No.6, pp.814-820 (1999)

第5章 水トリーに流れる電流の特性と水トリー劣化検出性能

5.1 緒言

第3章および第4章において,交流絶縁抵抗測定法の開発により低周波重畳法の測定原 理をより忠実に実現した交流絶縁抵抗測定装置 AIR は,数値計算およびフィールドで得ら れた測定結果より,高圧 CV ケーブルの劣化診断装置として必要な性能を有していること を確認した。当初の目的であった水トリー劣化については,劣化の度合いすなわち交流破 壊電圧との相関が高い測定結果が得られることも確認することができた。

11kV 以下の CV ケーブルでは水トリーが絶縁体を橋絡した後, 運転中に絶縁破壊を生じ ることが確認されており⁽¹⁾,水トリーの橋絡によって絶縁性能は著しく低下する。6.6kVの 運転電圧(対地電圧 3.8kV)で使用した場合,直流漏れ電流測定で劣化検出可能となる水 トリーが絶縁体を橋絡してからの余寿命は4年程度と推定されることから、診断周期とし て3年程度が推奨されている⁽²⁾。しかしながら, CV ケーブルのユーザーによっては診断周 期を 5~6 年とされているところもあり, 橋絡水トリーのみの検出では, 次回診断までに雷 サージなどの異常電圧によって絶縁破壊事故に至るという危険性は排除できない。一方, 22kV 以上の CV ケーブルでは, 未橋絡水トリーで運転中に絶縁破壊が生じると考えられて いる⁽³⁾。そのため、運転中の絶縁破壊事故を未然に防止するためには、11kV 以下の CV ケ ーブルでは橋絡水トリーの検出, 22kV 以上の CV ケーブルでは未橋絡水トリーの検出が必 要と考えられている(4)(5)。フィールド検証によって交流絶縁抵抗と交流破壊電圧の相関が 得られたのは 6.6kV CV ケーブルの水トリー劣化についてであり,現状では水トリーが絶 縁体を橋絡しているか否かの区別までは不可能である。そのため,橋絡水トリーと未橋絡 水トリーを区別することができれば診断技術の大きな進歩につながることから、水トリー に流れる電流の特性を調査し AIR による水トリー劣化の検出性能について評価を行うこ ととした。

水トリーの特性については、橋絡水トリーで検出される直流漏れ電流に加え橋絡水トリーと未橋絡水トリーのいずれでも検出可能と考えられる低周波損失電流について確認した。 なお、本章で取り扱う低周波損失電流(I_R=E/Rx)については、AIRで測定した交流絶縁 抵抗 Rx と低周波印加電圧 E から算出している。

っづいて,他の診断法との比較試験を実施し,AIR による交流絶縁抵抗測定の劣化検出 性能や判定の信頼性について比較評価を行った。さらに,22kV以上のCVケーブルにいて は,前述の通り未橋絡水トリーの検出が必要であることから,AIR による交流絶縁抵抗お よび低周波損失電流の測定によって,22kV以上のCVケーブルの水トリー劣化診断への適 用の可能性についても確認した。

5.2 1個の水トリーの特性

水トリーの電気的特性を検討するため、1個の水トリーの直流漏れ電流測定とAIR によ る低周波損失電流測定を行った。なお、1個の水トリーについては、図 5.1 に示すように水 トリーが発生した 6.6kV CV ケーブルを外部半導電層まで剥ぎ取って絶縁体を露出させ、 白い斑点として水トリーの発生を確認できる部分を含む 20~50cm の長さに切断したもの で、さらに、絶縁体上から見て対象外の水トリーの影響を受けにくく、図 5.2 に示すよう な1個の水トリーに限定した電極(半導電性ナイロンテープと遮へい銅テープ)が取り付 けられるものを試料としている⁽⁰⁾。

図 5.1 E-T タイプの絶縁体上から確認できる水トリーの発生状況

図 5.2 1 個の水トリー試料の電極処理方法の例(6)

まず,絶縁体を橋絡した1個の外導水トリーの直流漏れ電流を測定した結果を図 5.3 に 示す⁽⁷⁾。なお,印加電圧は導体側の極性を示している。2.2.4項(1)において,水トリーの起 点側の電圧が正極性に比べ負極性の方が直流漏れ電流が大きくなる傾向がある⁽⁸⁾ことを説 明しているが,そのことを裏付ける結果が得られている。また,図 5.3(b)の片対数グラフ の直線性(ln I∝V)から,高電界領域のイオン性伝導の可能性が示唆される。

さらに、図 5.4 に示すような 1 個の水トリーについて複数の特性を確認するため、7 個の橋絡水トリーと 3 個の未橋絡水トリーについて、図 5.5 に示す回路を構成し商用周波電 圧を重畳した状態(3.8kV を重畳した時がオンライン測定を模擬)での低周波損失電流を 測定した後、直流漏れ電流測定を行い、さらに、ガード電極を取り外して交流破壊試験を 行った結果を表 5.1 に示す。なお、No.1 については直流高電圧を印加すると絶縁破壊を起 こす可能性があったので直流漏れ電流測定を行っていない。また、試料の沿面長の関係で、 橋絡水トリーの試料(No.1~7)については 15kV まで、未橋絡水トリーの試料(No.8~10) については 35kV までの電圧印加で交流破壊電圧を確認している。

(a) 絶縁破壊を生じた橋絡水トリー

(b) 未橋絡水トリー

図 5.5 商用周波電圧を重畳する条件での AIR による低周波損失電流測定回路例

試料	水トリーの状態	直流漏れ電流	充	低周波損失電流(A)	交流破壊電圧							
No.	(残存絶縁厚)	最大印加電圧 (kV)	電流(A)	[商用周波電圧3.8kV重畳]	(kV)							
1		_	_	5.92×10 ⁻⁷	6							
2		10	1.83×10 ⁻⁵	7.65×10 ⁻⁸	14							
3		10 2.22×10 ⁻⁶ 5.5 橋絡 8 1.10×10 ⁻⁵ 5.1		5.53×10 ⁻⁸	14							
4	橋絡			5.11×10 ⁻⁸	14							
5		5	5.90×10 ⁻⁸	8.07×10 ⁻⁹	15以上							
6		8	4.00×10 ⁻⁷	2.12×10 ⁻⁹	15以上							
7		10	1.10×10 ⁻⁷	2.02×10 ⁻⁹	15以上							
8	未橋絡(0.6mm)	10	1×10 ⁻⁹ 未満	1.78×10 ⁻⁹	35							
9	未橋絡(0.8mm)	10	1×10 ⁻⁹ 未満	1.16×10 ⁻⁹	35以上							
10	未橋絡(1.0mm)	10	1×10 ⁻⁹ 未満	9.05×10 ⁻¹⁰	35以上							

表 5.1 1個の水トリーの特性確認結果

各試料の直流漏れ電流の電圧依存性を図 5.6 に示し, 7.5Hz-20V の低周波電圧を印加し 60Hz の商用周波電圧を 0~3.8kV まで変化させた時の低周波損失電流の商用周波重畳電圧 依存性を図 5.7 に示す。なお, 商用周波電圧を 3.8kV 重畳した時は, 低周波重畳法による オンライン測定を模擬した測定となる。

図 5.6 より, 2.2.4 項(1)の水トリーの直流電気伝導特性でも説明したように, 橋絡水トリーが存在すると 10kV までの直流電圧印加において 0.1µA 以上の直流漏れ電流が観測される⁽⁹⁾傾向を確認できる。また, 橋絡水トリーでは, 低い電圧から大きな直流漏れ電流が流れるものと, 一定の電圧以上となってから直流漏れ電流が流れはじめるものがあり, いずれも電圧上昇に伴って直流漏れ電流が増加する。一方, 未橋絡水トリーでは 10kV までの 直流電圧印加においても 1nA を超える漏れ電流が観測されないことを確認できる。

図 5.6 1個の水トリーの直流漏れ電流の直流印加電圧依存性

ここで、表 2.4 で示した水トリーの等価回路に基づく特性を考えると、橋絡水トリーの 等価回路は非線形要素を含む抵抗で表すことができるので、直流・交流いずれにおいても 伝導性の電流が流れる。また、未橋絡水トリーの等価回路は、水トリー劣化部が非線形要 素を含んだ抵抗、健全部の XLPE は非常に高い絶縁抵抗を示す静電容量で表され、抵抗と 静電容量の直列回路となる。そのため、直流では伝導性電流はほとんど流れないが、交流 では健全部の静電容量に流れる充電電流が水トリー劣化部の抵抗に流れることで損失電流 が生じる。これらのことから、橋絡水トリー、未橋絡水トリーのいずれにおいても、低周 波損失電流が流れることを説明できる。図 5.7 を見ると、橋絡・未橋絡にかかわらず水ト リーが存在すると、低周波損失電流は商用周波重畳電圧の上昇に伴って増加することが確 認できることから、オフライン測定よりオンライン測定での劣化検出性能が向上すること が分かる。この測定電圧と異なる周波数の電圧に対する依存性から、水トリーがオーム則 には従わない非線形抵抗特性を有していることが示唆される。

図 5.7 1個の水トリーの低周波損失電流の商用周波重畳電圧依存性

次に、1個の橋絡水トリーの直流漏れ電流と交流破壊電圧の関係を図 5.8 に、1 個の橋絡 または未橋絡水トリーを 3.8kV の商用周波電圧を重畳して測定(オンライン測定)した時 の低周波損失電流と交流破壊電圧の関係を図 5.9 に示す。データが少ないもののこれを見 ると、1 個の橋絡水トリーの直流漏れ電流と交流破壊電圧の相関があるとは言えないが、 1 個の橋絡または未橋絡水トリーをオンラインで測定した低周波損失電流と交流破壊電圧 については、強い相関が期待される結果が得られている。

したがって,直流漏れ電流の検出の有無によって,水トリーの橋絡・未橋絡の区別が可 能と考えられるが,水トリー劣化による交流破壊電圧との高い相関より,低周波損失電流 測定の方が優れた劣化検出性能を有する可能性が高いものと考えられる。また,直流漏れ 電流の電圧依存性,低周波損失電流の商用周波重畳電圧依存性から,水トリー劣化はオー ム則に従わないことが分かる。水トリーの電気的特性については各種の電気伝導機構が提 案されていることから,次節では電気伝導機構に基づいた劣化信号の発生について検討す ることとする。

図 5.8 1 個の橋絡水トリーの直流漏れ電流と交流破壊電圧の関係

図 5.9 1個の水トリーの低周波損失電流と交流破壊電圧の関係

5.3 水トリーの電気的特性面から見た劣化信号の検討

これまでの調査・検討において、水トリーの電気伝導機構については、イオン性伝導、 絶縁体内のショットキー効果とも言われる Poole-Frenkel 効果による電子性伝導⁽¹⁰⁾⁽¹¹⁾⁽¹²⁾に 従う可能性が確認されている。また、直流成分法の開発に際して確認された直流漏れ電流 の特性から空間電荷制限電流なども提案されている⁽¹³⁾。さらに、前節において、直流漏れ 電流の直流印加電圧依存性からイオン性伝導を、低周波損失電流の商用周波重畳電圧依存 性から非線形抵抗特性を示唆する結果が得られていることから、水トリーの電気伝導機構 に着目し、様々な電圧の印加によって検出される劣化信号について検討を行った。

5.3.1 各種の電気伝導機構に基づく伝導性電流の電圧依存性

これまで確認された水トリーの電気的特性から提案されているイオン性伝導, Poole-Frenkel 効果による電子性伝導, 空間電荷制限電流に基づく伝導性電流と印加電圧との関係 式とその特徴⁽¹⁴⁾を次に示す。なお, 伝導性電流 I, 印加電圧 V, コンダクタンス G, 電極間 距離 d, 誘電率 ε , 電気素量 e, 電荷密度 n, イオン振動数 v, イオンのホッピング距離 a, 移動度 μ , ボルツマン定数 k, 絶対温度 T, 電位障壁の高さ U とする。

(1) イオン性伝導

Ii=2enav exp
$$\left(-\frac{U}{kT}\right)$$
sinh $\left(\frac{eaV}{2kTd}\right)$ (5.1)

⇒低電界 eaV/d≪kT の時は,

$$\label{eq:Ii} \text{Ii} \simeq \text{enav} \exp\left(-\frac{\text{U}}{\text{kT}}\right) \frac{\text{eaV}}{\text{kTd}}$$

でI∝Vとなり,近似的にオーム則が成立する。

⇒高電界 eaV/d≫kT の時は,

Ii
$$\simeq \text{enav} \exp\left(-\frac{\text{U}}{\text{kT}}\right) \exp\left(\frac{\text{eaV}}{2\text{kTd}}\right)$$

で ln I ∝ V となり、電圧の上昇とともに指数関数的に電流が増加する。

(2) Poole-Frenkel 効果による電子性伝導

$$I_{\rm pf} \propto V \exp\left(\frac{e}{kT}\sqrt{\frac{eV}{\pi\epsilon d}}\right)$$
 (5.2)

で $\ln(I/V) \propto V^{1/2}$ ($\ln G \propto \sqrt{V}$) となり、電圧の平方根の上昇とともに指数関数的にコンダクタンスが増加する。

 $I_{sc} = \frac{9}{8} \varepsilon \mu \frac{V^2}{d^3} \qquad (5.3)$

で I∝V²となり、電圧の2乗に比例して電流が増加する。

5.3.2 水トリーに流れる伝導性電流の電圧の次数に対する依存性

水トリーに流れる電流の電圧依存性の検討に際し、提案されているそれぞれの電気伝導 機構から導き出される電流と電圧の関係式から電圧の各次数に対する影響度合いを評価し た。空間電荷制限電流は印加電圧 V の 2 乗に依存して電流が増加することが明らかである が、イオン性伝導は双曲線関数 sinh で表され、Poole-Frenkel 効果による電子性伝導はコン ダクタンスの対数が電圧の平方根に比例 (ln G $\propto \sqrt{V}$) することから、電圧の各次数に対す る影響を数学的に確認した。

そこで、イオン性伝導の式と Poole-Frenkel 効果による電子性伝導の式をマクローリン展開(a=0の周りでテーラー展開)し、電圧 Vの3次までの影響を示す式を導出した。なお、電圧 Vの各次数に対する影響評価を目的としているため、各伝導機構の式は次のように簡略化している。また、Ii、Ipf は電流、V は電圧、A、B、C、F は任意の定数とする。

(1) イオン性伝導

$$Ii \simeq A \sinh(BV)$$

(2) Poole-Frenkel 効果による電子性伝導

$$I_{pf} \simeq CV \exp(F\sqrt{V})$$
 (5.2')

..... (5.1')

(5.1') 式と(5.2') 式をマクローリン展開し電圧 Vの3次までの和で表すと、

【イオン性伝導の式の電圧 Vの3次までのマクローリン展開】

$$Ii \simeq ABV + \frac{1}{6}AB^3V^3 \qquad \qquad \dots \qquad (5.1")$$

【Poole-Frenkel 効果による電子性伝導の式の電圧 Vの3次までのマクローリン展開】

$$I_{pf} \simeq CV + CFV^{\frac{3}{2}} + \frac{1}{2}CF^{2}V^{2} + \frac{1}{6}CF^{3}V^{\frac{5}{2}} + \frac{1}{24}CF^{4}V^{3} \qquad (5.2")$$

(5.1")式,(5.2")式,(5.3)式より,各電気伝導機構に基づく電流は電圧 V の 1 乗,
3/2 乗,2 乗,5/2 乗,3 乗に依存することが分かる。ここでは、周波数分解が容易である電 圧 V の 1 乗,2 乗,3 乗に関して検討する。伝導性電流を I とし、電圧 V の各次数に対応 するコンダクタンスを G₁,G₂,G₃,任意の位相差をφ,任意の定数を A,B,D (A,B は (5.1")式および(5.2")式の定数とは異なる)とすると、

$$I \simeq G_1 V + G_2 V^2 + G_3 V^3$$
 (5.4)

となる。

印加する電圧が交流で1つの周波数成分のみの場合,

$$V=B \sin(\omega t - \varphi) \qquad \qquad \dots \qquad (5.5)$$

印加する電圧が交流で2つの周波数成分がある場合,

$$V_{12} = A \sin(\omega_1 t) + B \sin(\omega_2 t - \varphi) \qquad (5.6)$$

印加する電圧が交流と直流の場合,

$$V_{\rm D} = D + B \sin(\omega t - \varphi) \qquad (5.7)$$

と3種類の電圧を設定する。

次に, (5.4) 式の電圧 V が (5.5) 式, (5.6) 式, (5.7) 式で表される場合の V², V³を計 算する。

$$V^{2} = B^{2} \sin^{2}(\omega t - \varphi) = \frac{1}{2}B^{2} - \frac{1}{2}B^{2} \cos(2\omega t - 2\varphi) \qquad \dots \dots \qquad (5.8)$$

$$V_{\rm D}^{2} = D^{2} + B^{2} \sin^{2}(\omega t - \varphi) + 2BD \sin(\omega t - \varphi)$$

= $\frac{1}{2}B^{2} + D^{2} + 2BD \sin(\omega t - \varphi) - \frac{1}{2}B^{2} \cos(2\omega t - 2\varphi)$ (5.10)

$$\begin{split} V^{3} &= B^{3} \sin^{3}(\omega t - \varphi) = \frac{3}{4}B^{3} \sin(\omega t - \varphi) - \frac{1}{4}B^{3} \sin(3\omega t - 3\varphi) & \dots (5.11) \\ V_{12}{}^{3} &= A^{3} \sin^{3}(\omega_{1}t) + B^{3} \sin^{3}(\omega_{2}t - \varphi) + 3A^{2}B \sin^{2}(\omega_{1}t) \sin(\omega_{2}t - \varphi) \\ &+ 3AB^{2} \sin(\omega_{1}t) \sin^{2}(\omega_{2}t - \varphi) \\ &= \frac{3}{4}A^{3} \sin(\omega_{1}t) - \frac{1}{4}A^{3} \sin(3\omega_{1}t) + \frac{3}{4}B^{3} \sin(\omega_{2}t - \varphi) - \frac{1}{4}B^{3} \sin(3\omega_{2}t - 3\varphi) \\ &+ \frac{3}{2}A^{2}B[1 - \cos(2\omega_{1}t)]\sin(\omega_{2}t - \varphi) + \frac{3}{2}AB^{2}\sin(\omega_{1}t)[1 - \cos(2\omega_{2}t - 2\varphi)] \\ &= \frac{3}{4}A^{3} \sin(\omega_{1}t) - \frac{1}{4}A^{3} \sin(3\omega_{1}t) + \frac{3}{4}B^{3} \sin(\omega_{2}t - \varphi) - \frac{1}{4}B^{3} \sin(3\omega_{2}t - 3\varphi) \\ &+ \frac{3}{2}AB^{2}\left\{\sin(\omega_{1}t) - \frac{1}{2}\sin[(\omega_{1} - 2\omega_{2})t + 2\varphi] - \frac{1}{2}\sin[(\omega_{1} + 2\omega_{2})t - 2\varphi]\right\} \\ &+ \frac{3}{2}A^{2}B\left\{\sin(\omega_{2}t - \varphi) + \frac{1}{2}\sin[(2\omega_{1} - \omega_{2})t + \varphi] - \frac{1}{2}\sin[(2\omega_{1} + \omega_{2})t - \varphi]\right\} \\ &= \left[\frac{3}{4}A^{2} + \frac{3}{4}B^{2}\right]A\sin(\omega_{1}t) - \frac{1}{4}A^{3} \sin(3\omega_{1}t) \\ &+ \left[\frac{3}{2}A^{2} + \frac{3}{4}B^{2}\right]B\sin(\omega_{2}t - \varphi) - \frac{1}{4}B^{3} \sin(3\omega_{2}t - 3\varphi) \\ &- \frac{3}{4}AB^{2}\{\sin[(\omega_{1} - 2\omega_{2})t + 2\varphi] + \sin[(\omega_{1} + 2\omega_{2})t - 2\varphi]\} \\ &+ \frac{3}{4}A^{2}B\{\sin[(\omega_{1} - 2\omega_{2})t + 2\varphi] + \sin[(\omega_{1} + 2\omega_{2})t - 2\varphi]\} \\ &+ \frac{3}{4}A^{2}B\{\sin[(\omega_{1} - 2\omega_{2})t + 2\varphi] + \sin[(\omega_{1} + 2\omega_{2})t - 2\varphi]\} \end{split}$$

5.3.3 水トリーの電気伝導特性から推定される各種の劣化信号の特徴

(5.4) 式に各種の電圧((5.5) 式,(5.6) 式,(5.7) 式)を適用し,(5.4) 式および(5.5) ~(5.13) 式より,劣化診断で測定対象となる直流成分および周波数成分の電流を抽出し, それぞれの劣化信号の特徴を検討した。

(1) 直流成分電流について

直流成分電流は、(5.5) 式~(5.13) 式において周波数成分に依存しない項となるので、 次の場合に発生することが考えられる。なお、水トリーが未橋絡の場合、健全部の XLPE が非常に高い絶縁抵抗を示し直流電流がほとんど流れないので、直流成分電流の発生には 水トリーが絶縁体を橋絡していることが必要となる。

1) 商用周波電圧のみが印加された場合(直流成分法によるオンライン測定)

(5.4) 式,(5.5) 式,(5.8) 式,(5.11) 式より,電流 I が電圧 V の 2 乗に比例する特性 を有する場合に直流成分電流が発生((5.8) 式) することが分かる。この時の直流成分電流 I_{DC}は,商用周波電圧の波高値を B, Vc²に依存するコンダクタンスを G₂とすると,

$$I_{DC} \simeq \frac{1}{2} B^2 G_2 \qquad \qquad \dots \dots \qquad (5.14)$$

となる。この直流成分電流は、(5.3) 式に示す空間電荷制限電流、または(5.2") 式に示す Poole-Frenkel 効果による電子性伝導に基づくものであることが示唆される。

また,電流が電圧のべき乗に依存する計算には含んでいないが, Poole-Frenkel 効果による電子性伝導の場合には電圧 V^{(2n-1)/2} (n=1,2,3···) に依存し整流された電流が生じること も考えられるので,水トリーが絶縁体を橋絡していれば,直流成分電流が発生する可能性 が考えられる。

2) 商用周波電圧に直流電圧が重畳された場合(直流重畳法によるオンライン測定)

(5.4) 式,(5.7) 式,(5.10) 式,(5.13) 式より,電流 I が電圧 V の各次数に依存した直流成分電流が発生することが分かる。この時の直流成分電流 I_{DC} は,商用周波電圧の波高値を B,直流電圧の大きさを D,電圧 V の各次数に依存するコンダクタンスをそれぞれ G₁,G₂,G₃ とすると,

$$I_{DC} \simeq DG_1 + \left(\frac{1}{2}B^2 + D^2\right)G_2 + \left(\frac{3}{2}B^2 + D^2\right)DG_3$$
 (5.15)

となる。水トリーが絶縁体を橋絡していることが条件にはなるが、この式と(5.14)式を比べると、直流電圧の重畳により電圧 V の各次数に対する影響が表れ、直流成分電流が大きくなることが分かる。商用周波電圧印加時の直流成分電流は、空間電荷制限電流と Poole-Frenkel 効果による電子性伝導によるものと考えられるが、直流電圧の重畳によって、他の 電気伝導機構による直流成分電流の発生と増幅効果が期待できることから、劣化検出性能 の向上が示唆される。

(2) 交流重畳電流について

交流重畳法は,商用周波数 f_c (50/60Hz) が印加された状態で,ケーブル遮へい層の接地 線から商用周波数の 2 倍+1Hz (=f_a)の交流電圧を重畳した時に,非線形抵抗特性を示す 水トリーの存在によって発生する変調周波数成分 (f_a-2f_c=1Hz) である交流重畳電流を測 定する方法である。(5.6) 式,(5.9) 式,(5.12) 式において,重畳電圧の波高値を A,商用 周波電圧の波高値を B,重畳電圧の角周波数を ω_1 (=2 π f_a),商用周波電圧の角周波数を ω_2 (=2 π f_c), 3 相交流の商用周波電圧の各相の位相差を φ とすると,交流重畳法によるオン ライン測定で検出対象の周波数は ω_1 -2 ω_2 であるので,(5.12) 式で該当する周波数成分を 確認することができる。これを (5.4) 式に代入すると交流重畳電流 I_{AC} は次の式で表され る。

 $I_{AC} \simeq -\frac{3}{4}AB^2G_3\sin[(\omega_1 - 2\omega_2)t - 2\phi]$ (5.16)

この式より、交流重畳電流は、電流 I が電圧 V の 3 乗に依存する特性に由来することが 分かる。電流 I が電圧 V の 3 乗に依存して増加する項は、(5.1")式、(5.2")式で確認で きることから、交流重畳電流は、イオン性伝導と Poole-Frenkel 効果による電子性伝導に基 づく変調電流である可能性が示唆される。

また,(5.16) 式の sin の角度部分を見ると-2φ が含まれている。この位相角 φ は 3 相交 流の商用周波電圧の位相差に該当することから,0°,120°,240°の3つの位相の電圧が 印加されることになる。2φ となった場合は、位相は0°,240°,480°(=120°)となる ことから、各相の劣化が同じ程度のケーブルをオンラインで3 相一括測定を行うと、変調 電流として検出される劣化信号の打ち消し合いによって交流重畳電流が小さくなる可能性 があることが分かる。

(3) 低周波損失電流について

低周波損失電流は、フィールドにおいて AIR を用いた 3 つ方法での測定が可能である。 低周波電圧のみ印加するオフライン測定、3 相交流の商用周波電圧に低周波電圧を重畳す るオンライン測定、フィールでの実績はないが低周波電圧に直流電圧を重畳するオフライ ン測定が可能であり、これらの測定方法の選択や組み合わせによって水トリー劣化の検出 性能向上が期待できる。

1) 低周波電圧のみを印加した場合(オフライン測定)

低周波電圧のみを印加した時の低周波損失電流は、(5.5)式、(5.8)式、(5.11)式において、低周波電圧の波高値をA(B⇒A)、低周波電圧の角周波数を ω_1 ($\omega \Rightarrow \omega_1 = 2\pi f_m$)、低周

波電圧のみの印加のため φ=0 とすると、(5.5) 式、(5.11) 式で該当する周波数成分を確認 することができ、これを(5.4) 式に代入すると低周波損失電流 I_R は次の式で表される。

$$I_{R} \simeq A \left(G_{1} + \frac{3}{4} A^{2} G_{3} \right) \sin(\omega_{1} t) \qquad (5.17)$$

この式より,低周波電圧のみを印加した時の低周波損失電流は,電圧Vに比例して増加 する特性(オーム則)に電圧Vの3乗に依存する特性が加算されることが分かる。電流が 電圧Vの1乗と3乗に依存して増加する項は,(5.1")式,(5.2")式で確認できることか ら,低周波電圧のみを印加した時の低周波損失電流は,イオン性伝導と Poole-Frenkel 効果 による電子性伝導に基づく伝導性電流である可能性が示唆される。

2) 商用周波電圧に低周波電圧を重畳した場合(低周波重畳法によるオンライン測定)

低周波重畳法は,商用周波数 f_c(50/60Hz)の電圧が印加された状態で,3相一括して7.5Hz-20V を重畳し,低周波損失電流または交流絶縁抵抗を測定する方法であり,測定電圧として印加した7.5Hzの基本波成分の損失電流を測定する。(5.6)式,(5.9)式,(5.12)式において,低周波重畳電圧の波高値をA,商用周波電圧の波高値をB,低周波重畳電圧の角周波数を ω_2 (=2 π f_o),3相交流の商用周波電圧の 各相の位相差を φ とすると,低周波重畳法によるオンライン測定で検出対象の周波数は ω_1 であるので,(5.6)式,(5.12)式で該当する周波数成分を確認することができる。これを (5.4)式に代入すると低周波損失電流 I_Rは次の式で表される。

$$I_{\rm R} \simeq A \left[G_1 + \left(\frac{3}{4} A^2 + \frac{3}{2} B^2 \right) G_3 \right] \sin(\omega_1 t)$$
 (5.18)

この式より、3 相交流の商用周波電圧に低周波電圧を重畳した時の低周波損失電流は、 電圧 V の1 乗と3 乗に依存する特性に由来し、さらに、電圧 V の3 乗に依存する特性に よって、商用周波電圧が印加されたオンライン測定時の低周波損失電流が増加することが 分かる。電流 I が電圧 V の1 乗と3 乗に依存して増加する項は、(5.1")式、(5.2")式で 確認できることから、低周波損失電流は、低周波電圧のみを印加した時と同様イオン性伝 導と Poole-Frenkel 効果による電子性伝導に基づく電流である可能性が示唆される。

ここで、(5.17)式と(5.18)式より、低周波電圧のみを印加した場合に比べ、低周波電 圧に商用周波電圧を重畳した場合の低周波損失電流の増幅率は、

$$\frac{G_1 + \left(\frac{3}{4}A^2 + \frac{3}{2}B^2\right)G_3}{G_1 + \frac{3}{4}A^2G_3} = 1 + \frac{\frac{3}{2}B^2G_3}{G_1 + \frac{3}{4}A^2G_3} \qquad \dots \dots \quad (5.19)$$

となる。したがって、低周波電圧のみの印加に対して、商用周波電圧を重畳することで水 トリーから発生する低周波損失電流が増幅されるので、商用周波電圧が印加された状態で
低周波電圧を重畳するオンライン測定において、劣化検出性能が向上することを示している。

また,低周波電圧を印加して低周波損失電流を測定するため,(5.18)式の sin の角度部 分から交流重畳法のように3相交流電圧による劣化信号の打ち消し合いが発生しにくいこ とが分かる。

3) 低周波電圧に直流電圧を重畳した場合(オフライン測定)

オンライン測定はできないが、オフラインで低周波電圧を印加し直流電圧を重畳して低 周波損失電流を測定することによって水トリーに関する新しい特性を確認できる可能性を 期待し、低周波損失電流の直流重畳電圧依存性について検討した。

(5.7) 式,(5.10) 式,(5.13) 式において,低周波電圧の波高値をA(B⇒A),直流重畳 電圧をD,低周波電圧の角周波数を ω_1 ($\omega \Rightarrow \omega_1 = 2\pi f_m$),周波数成分の電圧は低周波電圧の みの印加のため $\varphi=0$ とすると,低周波損失電流の検出対象周波数は ω_1 であるので,(5.7) 式,(5.10) 式,(5.13) 式で該当する周波数成分を確認することができる。これを(5.4) 式 に代入すると低周波損失電流 I_Rは次の式で表される。

$$I_R \simeq A \left[G_1 + 2DG_2 + \left(\frac{3}{4}A^2 + 3D^2 \right) G_3 \right] \sin(\omega_1 t)$$
 (5.20)

この式より,低周波電圧に直流電圧を重畳した時の低周波損失電流は,電圧 V の 1 乗, 2 乗および3 乗に依存する特性に由来し,さらに,電圧 V の 2 乗および3 乗に依存する特 性によって,直流電圧重畳時の低周波損失電流が増加することが分かる。電圧 V の 1 乗, 2 乗および3 乗に依存して増加する項は,(5.1")式,(5.2")式および(5.3)式で確認でき ることから,直流電圧を重畳した時の低周波損失電流は,イオン性伝導と Poole-Frenkel 効 果による電子性伝導,さらに空間電荷制限電流に基づく電流である可能性が示唆される。

ここで、(5.17)式と(5.20)式より、低周波電圧のみを印加した場合に比べ、低周波電 圧に直流電圧を重畳した場合の低周波損失電流の増幅率は、

$$\frac{G_1 + 2DG_2 + \left(\frac{3}{4}A^2 + 3D^2\right)G_3}{G_1 + \frac{3}{4}A^2G_3} = 1 + \frac{2DG_2 + 3D^2G_3}{G_1 + \frac{3}{4}A^2G_3} \qquad \dots (5.21)$$

となる。このことより、低周波電圧のみを印加した場合に比べ、低周波電圧に直流電圧を 重畳することで、水トリーから発生する低周波損失電流が増幅されることが分かる。なお、 直流電圧重畳効果の発現には、水トリーに直流電圧が印加される必要があることから、橋 絡水トリーが存在する場合に確認される現象であると考えられる。また、(5.19) 式と(5.21) 式を見ると商用周波電圧を重畳した場合に比べ直流電圧を重畳した時の増幅率が大きくな るものと思われるが、各種の劣化信号の特徴については、次節で確認する水トリー劣化し たケーブルの特性で確認することとする。

5.4 水トリー劣化したケーブルと1個の水トリーの特性の詳細調査

実際の水トリーで劣化信号として検出される電流の特性を確認するため、水トリー劣化 したケーブルと1個の水トリーを試料として、様々な条件における電流の電圧および周波 数特性を確認した。さらに、得られた結果と前節で検討した電気伝導機構から導き出され た特性と比較分析することで、低周波損失電流または交流絶縁抵抗測定による水トリー劣 化の検出性能について検討した。

特性確認に用いた試料の諸元と交流破壊電圧の一覧を表 5.2 に示す。また,試料で確認 された水トリーをスライスして染色した写真を図 5.10 に示している。図 5.10(a)は1 個の橋 絡水トリーA に近い水トリー,同図(b)は1 個の橋絡水トリー試料 B に近い水トリー,さら に,同図(c)は未橋絡水トリー劣化ケーブル①に発生していた水トリーの例である。また, 1,600mm²の1 個の未橋絡水トリー試料をスライスして染色した写真の例は図 5.4(b)に示し ている。1 個の橋絡水トリー試料 A, B は水トリーの大きさが異なり,橋絡水トリーB に比 べ大きなサイズの橋絡水トリーA の直流漏れ電流が大きくなる傾向がある。

なお、1個の水トリーについては、5.2節の電極処理と同様、図5.1に示すように水トリ ーが発生したケーブルを外部半導電層まで剥ぎ取って絶縁体を露出させ、白い斑点として 確認できる水トリーを含む 20~50cm の長さに切断したもので、さらに、絶縁体上から見 て対象外の水トリーの影響を受けにくく、図5.2に示すような1個の水トリーに限定した 電極(半導電性ナイロンテープと遮へい銅テープ)が取り付けられるものを試料としてい る⁶。

試料	仕様・サイズ	タイプ	長さ	製造年	交流破壊電圧 (kV)
橋絡水トリー劣化ケーブル	6.6kV CV 3/38mm ²	E-T	20m	1972	10
未橋絡水トリー劣化ケーブル①	6.6kV CVT 60mm ²	T-T	24m	1976	35以上
未橋絡水トリー劣化ケーブル②	6.6kV CV 3×1600mm ²	E-T	5m	1978	30
未劣化ケーブル	6.6kV CVT 14mm ²	E-E	19m	1993	
1個の橋絡水トリーA	6.6kV CV 38mm ²	E-T		1972	14
1個の橋絡水トリーB	6.6kV CV 38mm ²	E-T		1972	14
1個の未橋絡水トリー	6.6kV CV 1600mm ²	E-T		1978	35以上

表 5.2 特性確認に用いたケーブル試料と1個の水トリー試料

劣化特性の測定および試験は、低周波損失電流の低周波印加電圧依存性、商用周波重畳 電圧依存性、直流重畳電圧依存性、周波数依存性、直流漏れ電流の直流印加電圧依存性、 交流破壊試験の順に実施している。なお、一部の特性については、直流高電圧印加による 特性変化を確認するため、直流漏れ電流測定後に再測定したものもある⁽⁶⁾⁽¹⁵⁾。測定順序と は異なる順にはなるが、測定方法および結果と特性に関する考察を次節以降で述べる。

(a)橋絡水トリーA タイプの例 (b)橋絡水トリーB タイプの例 (c)未橋絡水トリー①の例 図 5.10 試料に発生していた水トリー (メチレンブルーで染色)

5.4.1 直流電圧印加時の直流漏れ電流特性

(1) 測定方法

1 kV~10 kV の負極性の直流電圧 Vdc を印加し,直流漏れ電流 Idc を測定した。なお, 直流漏れ電流は 7 分値を読み取るが,7 分経過しても明らかな変動が確認できる場合は, 概ね安定状態を確認できるところで読み取ることとした。

(2) 測定結果

水トリーが絶縁体を橋絡していない場合 10kV の直流電圧を印加しても 0.1µA 以上の直 流漏れ電流が観測されないことが明らかではある⁽⁹⁾が,橋絡水トリー劣化ケーブルと 1 個 の橋絡水トリーで 0.1µA 以上の直流漏れ電流が観測された。なお,1 個の橋絡水トリーA は,直流印加電圧を上昇させることで絶縁破壊を生じる可能性が考えられたので,6kV ま での印加としている。図 5.11 に橋絡水トリー劣化ケーブルの直流漏れ電流の直流印加電圧 依存性を,図 5.12 に 1 個の橋絡水トリーの直流漏れ電流の直流印加電圧依存性を示す。

ケーブル試料,1 個の水トリー試料同様,橋絡水トリーが存在すると直流印加電圧に対 し非線形的に直流漏れ電流が増加している。一方,1 個の橋絡水トリーB は,最初の測定 で,5kV までの印加では直流漏れ電流が観測されていないが,8kV 以上の印加で直流漏れ 電流が観測されている。また,橋絡水トリーB は直流漏れ電流が確認できる程度の直流高 電圧を印加した後は,比較的低い直流電圧でも大きな漏れ電流が観測されるようになって いる。直流電圧印加前は水トリー内部の水分が少ない(多少乾燥した)状態であったが, 直流電圧の印加によって水トリー内部への水分の供給が行われ,導電率が上昇し直流漏れ 電流が流れやすくなったためではないかと考えられる。

水トリーがミクロボイドの集合体でその間にパスが認められる⁽¹⁶⁾こと,直流漏れ電流 Idcの直流印加電圧 Vdc 依存性を見ると log(Idc)-Vdc プロットが概ね直線になることから, 橋絡水トリーに流れる直流漏れ電流は,高電界領域のイオン性伝導⁽¹⁴⁾の影響を大きく受け ている可能性が考えられる。橋絡水トリーに直流電圧が印加されると,イオン(水分)が 水トリー内部に浸入し,水トリー内部の導電率を大きくしていることが考えられる。これ は,後で確認する直流電圧印加後の損失電流増加からも予想される現象である。

図 5.11 橋絡水トリー劣化ケーブルの直流漏れ電流の直流印加電圧依存性(15)

図 5.12 1 個の橋絡水トリーの直流漏れ電流の直流印加電圧依存性(の)

5.4.2 低周波電圧印加時の低周波損失電流特性

(1) 測定方法

AIR を用いて図 5.13 に示す測定回路を構成し、7.5Hz の低周波電圧 E を 20~1,000V まで変化させ低周波損失電流 IRを測定した。これは、オフライン測定を想定したものである。

図 5.13 低周波損失電流の測定回路(15)

(2) 測定結果

図 5.14 にケーブルの低周波損失電流の低周波印加電圧依存性を,図 5.15 に 1 個の水ト リーの低周波損失電流の低周波印加電圧依存性を示す。

図 5.14 ケーブルの低周波損失電流の低周波印加電圧依存性(15)

図 5.15 1 個の水トリーの低周波損失電流の低周波印加電圧依存性(6)

図 5.14 を見ると、橋絡水トリー劣化ケーブルより未橋絡水トリー劣化ケーブル①の低周 波損失電流が大きくなっており、低周波損失電流の大きさから劣化の程度を判定すること は難しいことが分かる。また、図 5.14(b)および図 5.15(b)では片対数グラフの直線性が確認 できないことから、直流漏れ電流で確認されたイオン性伝導が低周波損失電流の発生を支 配しているとは言えないことが分かる。

一方,図 5.14(a)および図 5.15(a)の両対数グラフでは直線性を確認でき、それぞれのケー ブルおよび 1 個の水トリー試料の低周波損失電流 I_R は概ね低周波印加電圧 E の n 乗に比 例して増加することが分かる。回帰分析の結果、それぞれの n の値は、未劣化ケーブルで 0.902、未橋絡水トリー劣化ケーブル①で 1.369(交流破壊電圧 35kV 以上)、未橋絡水トリ ー劣化ケーブル②で 1.372(交流破壊電圧 30kV)、橋絡水トリー劣化ケーブルで 1.522(交 流破壊電圧 10kV)となり、n の値が大きくなるほど交流破壊電圧が低下している。

なお、1 個の水トリーでは、橋絡水トリーA が 1.114 (交流破壊電圧 14kV), 未橋絡水ト リーが 1.223 (交流破壊電圧 35kV 以上), 橋絡水トリーB が 1.492 (交流破壊電圧 10kV) となっており、n の値と交流破壊電圧の相関があるとは言えない。これは、図 5.10(a)およ び図 5.4(b)に示すように、橋絡水トリーA に比べ未橋絡水トリー試料の水トリーサイズが かなり大きいものであることと、水トリー内部に含まれる水分の量や分布状態が影響して いるためではないかと考えられる。

したがって、低周波損失電流の大きさから劣化の程度を判定するのは難しいが、低周波 損失電流の低周波印加電圧依存性(n値:べき指数)を評価することにより、水トリー劣 化の有無を推定できるものと考えられる。なお、橋絡水トリーと未橋絡水トリーの区別が できると言える結果はここでは得られていない。

5.4.3 商用周波電圧重畳時の低周波損失電流特性

(1) 測定方法

AIR を用いて図 5.16 に示す測定回路を構成し,7.5Hz の低周波電圧 E を 20V と固定し て,3 相交流の商用周波電圧(対地電圧) Vc を 0~3.8kV まで変化させ低周波損失電流 I_R を測定した。3 相交流の商用周波重畳電圧(対地電圧) Vc を 3.8k V とした時が 6.6 kV ク ラスのオンライン測定を模擬したものとなる。

図 5.16 商用周波電圧重畳による低周波損失電流の測定回路(15)

(2) 測定結果

図 5.17 にケーブルの低周波損失電流の商用周波重畳電圧依存性を,図 5.18 に1 個の水 トリーの低周波損失電流の商用周波重畳電圧依存性を示す。

(a) 両対数表示

(b) 片対数表示

図 5.17 ケーブルの低周波損失電流の商用周波重畳電圧依存性(15)

図 5.18 1 個の水トリーの低周波損失電流の商用周波重畳電圧依存性(6)

図 5.17 を見ると、未劣化ケーブルの低周波損失電流は、商用周波重畳電圧に依存せず概 ね一定の値となっている。一方、3 種類の水トリー劣化ケーブルでは、低周波損失電流の 商用周波重畳電圧に対する依存性が認められる。また、低周波電圧のみを印加した場合で は橋絡水トリー劣化ケーブルより未橋絡水トリー劣化ケーブルの低周波損失電流が大きく なる場合があったのに対して、商用周波電圧を重畳すると逆転し、重畳電圧の上昇に伴い 橋絡水トリー劣化ケーブルの低周波損失電流が大きくなる傾向を確認できる。ケーブル試 料、1 個の水トリー試料いずれにおいても、橋絡水トリーと未橋絡水トリーの低周波損失 電流の差は、商用周波電圧が重畳されていない場合に比べ、3.8kV 重畳された場合すなわ ち 6.6kV のオンライン測定時に明確になる傾向があることが分かる。また、未劣化ケーブ ルでは電圧依存性が表れていないことから、低周波印加電圧依存性と同様、低周波損失電 流の商用周波重畳電圧依存性を確認することにより、水トリー劣化の有無を推定可能であ ることが分かる。

ここで、水トリーの電圧依存性について検討してみる。橋絡水トリーの場合、電圧が直 接水トリーに印加されるため、水トリーそのものの電圧依存性が表れる。一方、未橋絡水 トリーの場合は、健全部として残る絶縁体の静電容量を介して電圧が印加されるため、電 圧が上昇すると、水トリーのインピーダンスが低下し水トリーにかかる電圧の上昇が抑制 されることが予想され、橋絡水トリーに比べ低周波損失電流の電圧依存性が表れにくくな るものと考えられる。図 5.18(b)の片対数グラフで確認できる1個の未橋絡水トリーの低周 波損失電流の飽和傾向は、このような理由に基づき表れる特性ではないかと考えられる。 したがって、印加または重畳電圧が高くなると、劣化状態による低周波損失電流の差が表 れやすくなるものと考えられる。

水トリーの電気伝導特性については、水分の影響によるイオン性伝導以外に、直流成分 電流および損失電流の商用周波電界依存性から Poole-Frenkel 効果による電子性伝導が提案 されている⁽¹⁰⁾⁽¹¹⁾。そこで、低周波損失電流に関して電子性伝導の可能性を検討するため、 低周波コンダクタンスの電界依存性を確認した。ケーブル試料に商用周波電圧を重畳し測 定した時の低周波コンダクタンスと交流合成電界(商用周波重畳電圧 Vc と低周波印加電 圧 E の合成電界(Vc²+E²)^{1/2}/d)の関係を図 5.19 に、前項の測定結果に基づき低周波電圧の みを印加した時の低周波コンダクタンスと低周波印加電界の関係を図 5.20 に示す。

表 5.2 に示すように,内部半導電層がテープ処理のものでは内部半導電層と絶縁体の界 面は平滑ではなく,また,比誘電率が 80 程度の水分を含んだ水トリー劣化部の比誘電率 は,XLPE の 2.3 の 2 倍程度である⁽¹⁸⁾とか,水トリー劣化部の長さにより 2.5~7.0 となる ⁽¹⁹⁾とした報告もあることから,電界分布は一様にはならないが,ここでは約 3.5 mm 厚の 絶縁体に平等電界が印加されたものとして考察する。

図 5.19(b)の1 個の水トリー試料では,必ずしも直線性があるとは言えないが,図 5.19(a) のケーブル試料のグラフの直線性から水トリー劣化ケーブルでは低周波コンダクタンスの 対数が交流電界の平方根に比例して大きくなる特性を確認できる。この特性は,既に報告 されている直流成分電流や商用周波損失電流の商用周波電界依存性⁽¹⁰⁾⁽¹¹⁾と同様,低周波電 圧に商用周波電圧を重畳した時の低周波損失電流が Poole-Frenkel 効果による電子性伝導 ⁽¹⁴⁾に適合する可能性を示唆するものと考えられる。また,図 5.20 より,低周波コンダクタ ンスの対数が低周波印加電界の平方根に比例して増加する特性があるとは言えないので, 低周波電圧のみを印加した時と低周波電圧に商用周波電圧を重畳した時の低周波コンダク タンスの交流電界依存性を図 5.21 に表し分析した。

図 5.19 商用周波電圧を重畳した時の低周波コンダクタンスの交流合成電界依存性

図 5.20 低周波電圧のみを印加した時の低周波コンダクタンスの低周波印加電界依存性

図 5.21 低周波コンダクタンスの交流電界依存性

図 5.21(a)を見ると、橋絡水トリー劣化ケーブルおよび未絡水トリー劣化ケーブルのいず れにおいても、低周波電圧に加え商用周波電圧を重畳することで、低周波コンダクタンス の対数が交流電界の平方根に比例して増加する傾向を確認でき、この傾きの違いから橋絡 水トリー劣化と未橋絡水トリー劣化を区別できる可能性があることが分かる。一方、低周 波電圧のみを印加した場合は、100V/mm 程度までの電界では低周波コンダクタンスの対数 が交流電界の平方根に比例して増加する傾向は認められないが、100V/mm 程度を超える電 界になると低周波コンダクタンスの対数が交流電界の平方根に比例して増加する傾向がう かがえる。また,前節における水トリーの電気伝導機構に基づく劣化信号の特性から,低 周波電圧のみを印加した時と低周波電圧に商用周波電圧を重畳した時の低周波損失電流は, 低周波電圧 E の1乗と3乗に依存するコンダクタンスに基づく特性を示すことから,イオ ン性伝導と電子性伝導に基づいて生じる電流である可能性が考えられる。

なお、図 5.21(b)に特性を示す1個の水トリー試料においては、橋絡水トリーAの商用周 波電圧の重畳あり・なし、未橋絡水トリーの商用周波電圧の重畳ありで、低周波コンダク タンスの対数が交流電界の平方根に比例して増加する傾向に近い特性が見られるが、橋絡 水トリーBでは、同様の特性があるとは言えない。そこで、他の1個の橋絡水トリーを試 料とし、オンライン(3.8kVの商用周波電圧に7.5Hz-20Vの低周波電圧を重畳)での低周 波損失電流を15分間隔で測定した。図 5.22 に示す結果によると、1 個の橋絡水トリーの 低周波損失電流は時間経過とともに大きく変動していることから、1 個の橋絡水トリーで は長時間安定した特性が得られるとは限らない。また、1 個の水トリーの場合、直流漏れ 電流のように流れる電流が不安定で大きく変動する特性が表れやすいこともあるので、橋 絡水トリーの特性変化の影響を受けた可能性が考えられる。

図 5.22 1 個の橋絡水トリーの低周波損失電流をオンラインで測定した時の時間変化

ここまでの検討で確認した特性から、水トリー劣化したケーブルの低周波損失電流は、 商用周波電圧を重畳した時はPoole-Frenkel効果による電子性伝導に適合する可能性がある と考えられる。一方、低周波電圧のみを印加した時の低周波損失電流は、一定の電界以下 では電子性伝導以外のイオン性伝導などの影響が支配的となり、一定の電界以上になると Poole-Frenkel効果による電子性伝導の影響が支配的になるのではないかと考えられる。ま た、低周波電圧のみを印加した時は、橋絡水トリーと未橋絡水トリーの区別が難しくなる 場合があるのに対し、低周波電圧に商用周波電圧を重畳した時の方が、橋絡水トリーと未 橋絡水トリーの区別が容易になる可能性があることを確認した。これは、測定周波数以外 の電圧の重畳により水トリー特有の電気的特性を引き出しやすくなり,劣化検出性能が向 上することを示唆するものである。

フィールドでは、低周波重畳法として配電用 6.6kV CV ケーブルのオンライン診断に適 用されており、交流絶縁抵抗の測定結果に基づき劣化判定が行われている。その判定基準 では400MΩ, 1,000MΩをしきい値としており⁽²⁰⁾、低周波損失電流で見ると、20nA 以上で 要注意、50nA 以上で不良判定となる。これに従えば、橋絡水トリー劣化ケーブル、1 個の 橋絡水トリーB は不良、未橋絡水トリー劣化ケーブル①および②は要注意、1 個の橋絡水 トリーA と未橋絡水トリー,未劣化ケーブル1は良判定となり、必ずしも1 個の橋絡水トリ ーが検出できるとは言えない。そこで、オンライン測定(商用周波電圧 3.8kV 重畳時)の 結果から1 個の水トリーの劣化検出性能を考えると、橋絡水トリーA のタイプが 10 個程 度あれば 50nA 以上となり不良と判定され、橋絡水トリーB のタイプは1 個でもあれば不 良と判定される。一方、未橋絡水トリーについては、今回用いた大きなサイズのものであ れば 12 個程度で 20nA 以上となり要注意と判定される。

5.4.4 直流電圧重畳時の低周波損失電流特性

(1) 測定方法

AIR を用いて図 5.23 に示す測定回路を構成し, 7.5Hz の低周波電圧 E を 20V と固定して, 正極性と負極性の直流電圧 Vdc を 0~5.4kV(6.6 kV クラスの対地電圧の波高値相当) まで変化させ低周波損失電流 I_R を測定した。

橋絡水トリーに交流電圧を印加すると、その整流作用によって直流成分電流が発生する ことが確認されている⁽¹⁰⁾ことから、直流電圧を重畳した時に、整流作用によって橋絡水ト リー劣化ケーブルと未橋絡水トリー劣化ケーブルおよび未劣化ケーブルの低周波損失電流 の特性に違いが見られることを期待し、この試験を実施した。

図 5.23 直流電圧重畳による低周波損失電流の測定回路(11)

(2) 測定結果

図 5.24 にケーブルの低周波損失電流の直流重畳電圧依存性を示す。低周波損失電流の直流重畳電圧依存性は、橋絡水トリー劣化ケーブルでは正極性、負極性とも確認できるが、 商用周波電圧を重畳した場合と比較すると、3.8kV 付近では1桁程度以上小さな値となっ ている。さらに、正極性と負極性とでは直流重畳電圧に対する依存性が異なり、正極性の 場合が大きくなっている。一方、未劣化ケーブル、未橋絡水トリー劣化ケーブルについて は、直流重畳電圧依存性はほとんど認められない。

図 5.24 ケーブルの低周波損失電流の直流重畳電圧依存性(11)

橋絡水トリー劣化ケーブルに直流電圧を重畳した場合の低周波損失電流は、両極性で似 たような特性を示すものの若干異なる電圧依存性を示しており、導体側を正極とした場合 の低周波損失電流が大きくなっている。これは、E-Tタイプのケーブルのため、図 5.10(a) および(b)に示すように外部半導電層側を起点とする橋絡水トリーが多数存在しており、導 体側を正極とした場合すなわち橋絡水トリーの起点側が負極性となることから、水トリー の起点側からの電子の注入または水トリー先端からの電子の放出が起こりやすい特性に基 づくものではないかと考えられる。

橋絡水トリー劣化ケーブルの低周波損失電流が,直流電圧の重畳によって増幅されるこ とについては,前節における水トリーの電気伝導機構に基づく劣化信号の特性からも説明 することができる。それによると,低周波電圧に直流電圧を重畳した時の低周波損失電流 は,低周波電圧 E の1 乗と2 乗および3 乗に依存するコンダクタンスに基づいて発生する と考えられることから,イオン性伝導と電子性伝導に加え,空間電荷制限電流にも基づい て生じる電流である可能性が考えられる。

これらのことから,オフラインで低周波電圧のみを印加する場合に対して,商用周波電 圧の印加に低周波電圧を重畳(オンライン測定),または低周波電圧の印加に直流電圧を重 畳(オフライン測定)することで,水トリーから発生する低周波損失電流が増幅されるこ とが、測定結果と電気伝導機構からの説明で明らかになった。(5.19)式と(5.21)式を見 ると、直流電圧を重畳する場合の方が様々な電気伝導機構に基づいた劣化信号が生じるの で、低周波損失電流の増幅率が大きくなるものと思われるが、図 5.17(商用周波電圧を重 畳) と図 5.24(直流電圧を重畳)に示す橋絡水トリー劣化したケーブルの特性を見ると、 20V の低周波電圧に対地電圧 3.8kV の 3 相交流の商用周波電圧重畳した時の低周波損失電 流が 110nA, 20V の低周波電圧に 5.4kV(AC3.8kV の波高値相当)の直流電圧を重畳した 時の低周波損失電流が負極性で 10.3nA, 正極性で 16.9nA となっている。この違いは, 橋 絡水トリー劣化したケーブルでも多数の未橋絡水トリーが存在し、未橋絡水トリーでは直 流電界が健全部の静電容量で遮られ、直流電界が未橋絡水トリーにはほとんど印加されず 橋絡水トリーのみに印加されるので、直流電圧の重畳効果が小さく表れたものと考えられ る。一方、商用周波電圧を重畳する場合は、未橋絡水トリーの健全部の静電容量に充電電 流が流れ,橋絡水トリーだけではなく未橋絡水トリーにも交流電界が印加されるため,商 用周波電圧の重畳効果が大きく表れたものと考えられる。

5.4.5 低周波損失電流の周波数依存性

(1) 測定方法

低周波重畳法で使用する測定周波数は,開発当初 60Hz を分周し 1/8 にした周波数として 7.5Hz が採用されている。しかし, AIR は任意の周波数での測定が可能であることから,水トリー劣化の検出において 7.5Hz という周波数が最適であるのかどうかを確認するために,周波数依存性を調べた。

AIR を用いて図 5.16 に示す商用周波電圧重畳による低周波損失電流の測定回路を構成 し,低周波電圧 E を 20V と固定して,1~30Hz の周波数範囲で低周波損失電流 I_R を測定し た。なお,3 相交流の商用周波重畳電圧が 0V(オフライン測定)と 3.8kV(オンライン測 定)の条件で測定し特性を比較した。

(2) 測定結果

図 5.25 にケーブルの低周波損失電流の周波数依存性を,図 5.26 に 1 個の水トリーの低 周波損失電流の周波数依存性を示す。なお、1 個の橋絡水トリーA については、直流高電 圧印加後の測定も行い、特性の変化を確認した。

図 5.26 1 個の水トリーの低周波損失電流の周波数依存性(6)

先に図 5.26 に示した 1 個の水トリーの低周波損失電流を見ると,橋絡水トリーにおいて は、オフライン測定では周波数依存性が見られるが、オンライン測定では周波数依存性が 小さくなる傾向が確認できる。また、オンライン測定で周波数依存性が確認された橋絡水 トリーA においても、直流高電圧印加後の低周波損失電流は、橋絡水トリーB 同様周波数 依存性が小さくなっている。この特性は以前にも確認しており⁽²¹⁾、ある一定以上の電気的 ストレス下においては,橋絡水トリーが抵抗のみの等価回路または抵抗と静電容量の並列 等価回路で表されることを示すものである。一方,未橋絡水トリーの場合は,劣化部の抵 抗と健全部の静電容量が直列に接続されることになるため,周波数依存性が表れている。

次に図 5.25 を見ると、ケーブルの場合は、水トリー劣化の程度、オンラインまたはオフ ライン測定かにより得られる低周波損失電流のオーダーが変化することが分かる。オフラ イン測定では水トリー劣化の程度と低周波損失電流の相関は明確ではないが、オンライン 測定では、橋絡水トリー劣化ケーブルと未橋絡水トリー劣化ケーブル、未劣化ケーブルの 低周波損失電流の差が表れ、水トリー劣化の程度と低周波損失電流の相関が明確になる傾 向が確認できる。

また、オンラインで低い周波数で測定するほど、橋絡水トリーと未橋絡水トリーの低周 波損失電流の差が大きくなる傾向があることから、橋絡水トリー劣化ケーブルと未橋絡水 トリー劣化ケーブルを区別しやすくなるものと考えられる。逆に、オンラインで高い周波 数で測定すると、橋絡水トリー劣化ケーブルと未橋絡水トリー劣化ケーブルの区別が困難 になるが、未劣化ケーブルと水トリー劣化ケーブル(橋絡・未橋絡の区別なし)は区別し やすくなることが分かる。したがって、劣化の度合いに応じた結果が得られる周波数とし て、7.5Hz は概ね妥当な測定周波数であると言うことができる。

水トリー劣化が存在すると、オンライン測定での低周波損失電流が増加する傾向が確認 でき、その程度は橋絡水トリーが存在する場合に顕著となる。また、橋絡水トリー劣化ケ ーブルでも多数の未橋絡水トリーを含んでいることが多いので、オンライン測定時の低周 波損失電流の大きさから劣化の程度を推定できる可能性はあるが、周波数依存性から劣化 の程度を見分けるのは困難であると考えられる。

5.4.6 劣化検出性能の評価

以上の検討結果から, 6.6kV の CV ケーブルの診断法として実際にフィールドに適用で きる方法で,それぞれの劣化を区別可能かどうかについて表 5.3 にまとめた⁽⁶⁾。

フィールドで CV ケーブルの診断を行うことを想定すると,橋絡水トリー劣化,未橋絡 水トリー劣化,未劣化の区別は,オフラインで低周波損失電流(または交流絶縁抵抗)の 低周波印加電圧依存性確認と直流漏れ電流測定を組み合わせた複合診断での信頼性が高く なる。

また,現在実施している低周波重畳法によるオンライン診断で,要注意・不良判定が得 られたケーブルをオフラインで直流漏れ電流を測定する方法は,効率の良い複合診断法で あることが分かる。この方法は,劣化の可能性の高いケーブルをオンライン診断で抽出し, オフライン診断で危険なケーブルを絞り込むことを意味する手法である。

с°:		オフライン診	新	オンライン診断		
診断対象	低周波損 (交流絶縁	失電流 彖抵抗)	社谷前と朝谷	低周波損失電流 (交流絶縁抵抗)		
5-570	印加電圧 依存性	周波数 依存性	国(肌(胴4)) 国(肌	7.5Hz-20V での測定結果	周波数 依存性	
橋絡水トリー 劣化	Δ	×	Ø	0	\bigtriangleup	
未橋絡水トリー 劣化	Δ	×	×	0	Δ	
未劣化	Ø	×	×	0	\bigtriangleup	
備考	水り-劣化の 有無が分かる	明確な差が 表れない	橋絡水りーのみ 検出可能	絶対値で判	间另门	

表 5.3 劣化検出性能

◎:判別可能

○:ある程度判別可能

△:判別はできないが劣化していることが分かる

×:判別不可能(劣化しているかどうか分からない)

5.5 交流絶縁抵抗測定法を用いた診断法と他の診断法との比較

前節では、水トリー劣化したケーブルと1個の水トリーの直流漏れ電流と、低周波電圧 を印加して測定した交流絶縁抵抗から算出した低周波損失電流の特性について確認した。 本節では、6.6kV CV ケーブルの交流絶縁抵抗測定による診断法(オンラインおよびオフラ イン)と11kV 以下の CV ケーブルの精密診断法として適用される直流漏れ電流法、オン ライン診断法として適用されている交流重畳法や以前に適用されていた直流成分法につい て、劣化検出性能および判定の信頼性について調査した。なお、直流漏れ電流法での劣化 判定は表 5.4 に示す基準に基づき、他の診断法での劣化判定は、2.4 節で示した判定基準に 基づき実施している。

判定	直流漏れ電流および波形などの特徴				
良	0.1µA 未満で波形に異常なし				
要注意	1.0μA 未満で波形に異常(乱れやキック現象)あり				
不良	1µA 以上				

表 5.4 直流漏れ電流法の判定基準

5.5.1 直流漏れ電流法との比較

直流漏れ電流法は、2.4.1項(1)2)で説明したとおり直流高電圧印加時の漏れ電流を測定するオフライン診断法である。1 個の橋絡水トリーを検出が可能であることから、オンライン診断で要注意や不良判定が得られた場合にオフラインで更新の必要性を確認するためなど、11kV以下の CV ケーブルの精密診断として適用されている。

著者は、数多くの CV ケーブルで交流絶縁抵抗測定と直流漏れ電流測定を実施して来た が、その中で、直流漏れ電流法で検出可能な橋絡水トリーが存在する劣化ケーブルについ て、オンラインで交流絶縁抵抗を測定(低周波重畳法)した時の劣化検出性能に関する実 力を確認した一例を図 5.27~5.29 に示す。なお、直流漏れ電流測定の前に、直流高電圧印 加の可否を判断するための簡易測定として 1,000V メガーで異常の有無を確認している。

事例①は、オンラインでの交流絶縁抵抗測定(低周波重畳法)とオフラインでのメガー および直流漏れ電流測定で不良判定が得られ、交流破壊電圧が14kV であることから、各 手法で適切な結果が得られている。事例②では、交流破壊電圧が11kV と低いにもかかわ らず、メガーのみ良判定が得られている。このように、メガーでは水トリー劣化を検出で きない事例が多いことから水トリー劣化の診断に適しているとは言えない。なお、事例①、 ②では、いずれもオンラインで交流絶縁抵抗を測定した結果不良判定となっていることか ら、低周波重畳法では適切な結果が得られていることが分かる。

一方,事例③では、メガーで良判定、オンラインでの交流絶縁抵抗測定結果は要注意レベルに近いものの良判定となっているのに対し、8kV印加した時の直流漏れ電流測定では 全く異常の兆候が確認されなかったにもかかわらず、10kVに昇圧した直後に絶縁破壊を 生じさせてしまった。この結果から、低周波重畳法の現在の測定条件と判定基準では、劣 化が進んだケーブルを見逃してしまう可能性がゼロではないことが分かる。また、この事

・事例①: 6.6kV CV 3/38mm²×3m(1972 年製)

:低周波重畳法、メガー、直流漏れ電流法、交流破壊電圧すべての結果が不良

低周波重畳法	1,000Vメガー	直流漏れ電流法	交流破壊電圧
$(M\Omega)$	$(M\Omega)$	(µA)	(kV)
<u>74</u>	1,500	<u>10</u>	<u>14</u>
不良	不良	<u>不良</u>	<u>不良</u>

DC10kV印加

•事例②: 6.6kV CV 725mm²×3×5.4m (1972 製)

: 低周波重畳法, 直流漏れ電流法, 交流破壊電圧の結果が不良で, メガーの結果が良

低周波重畳法	1,000Vメガー	直流漏れ電流法	交流破壊電圧
$(M\Omega)$	$(M\Omega)$	(µA)	(kV)
262	2,000以上	<u>10</u>	<u>11</u>
<u>不良</u>	良	<u>不良</u>	不良

図 5.28 劣化検出性能確認事例②

・事例③: 6.6kV CV 725mm²×3×5.4m (1972 製)

: 低周波重畳法,メガーの結果が良であったが,直流漏れ電流測定中に絶縁破壊

低周波重畳法	1,000Vメガー	直流漏れ電流	交流破壊電圧		
$(M\Omega)$	$(M\Omega)$	(µA)		(k)	V)
1,083	2,000以上	DC10kV 印加中	破壞	-	-
良	良	<u>不良</u>			
~	DC1	IOk VEP加 破壞	DC	8 k V印加	
人资本 等于有	1- W	• 0.7			0.7
at the all		0.6			0.6
		0.5		•	0.5
	1.00mm/div	0.4			0.4
1 Links		0.3		•	0.3
1 70 Miles		0.2			0.2
1 + Manut		0.1		0	0.1
	1.00mm/div5 4 :	3 2 1 0 7 6	5 5 4	3 2	1 0

例③の試料は,直流漏れ電流測定中に絶縁破壊を生じさせないよう細心の注意を払って課 電の緊急停止を行っても,測定中の絶縁破壊を防止できない場合があることを示している。

したがって、11kV 以下の CV ケーブルの診断法は確立してきてはいるものの、劣化検出 性能のさらなる向上や測定中のトラブル防止などが今後の課題として残るものと考える。

5.5.2 直流成分法との比較

1990年前後(昭和の終わりから平成のはじめ)直流成分法は,配電用高圧 CV ケーブルのオンライン診断法として最も普及していた。低周波重畳法は,直流成分法より劣化検出性能が高い診断法として実用化したが,ユーザーでの適用に際しては,既存の診断法との比較評価が必須となった。

そのため、撤去ケーブルを用いてオンラインでの交流絶縁抵抗測定(低周波重畳法)と 直流成分電流測定、オフラインでの直流漏れ電流測定を行い、交流破壊電圧と水トリーの 発生状況を確認した。測定に用いた試料の諸元と解体後の絶縁破壊点近傍の水トリー発生 状況および各手法の測定結果と判定、交流破壊電圧の一覧を表 5.5 に示す。

結果を見ると,試料③④の未橋絡水トリー劣化ケーブルについては,オンラインでの直 流成分電流測定およびオフラインでの直流漏れ電流測定では劣化信号が検出されず良判定 となっており,直流成分法や直流漏れ電流法では未橋絡水トリーの検出が困難であること を改めて確認できる。一方,オンラインでの交流絶縁抵抗測定(低周波重畳法)では,試 料①②の橋絡水トリー劣化ケーブルは不良判定,試料③④の未橋絡水トリー劣化ケーブル は要注意判定で,交流破壊電圧が試料①②で10~11kV,試料③④で25~30kV であり,概 ね劣化の度合いに応じた結果が得られていることが分かる。

試料①②のケーブルでは、いずれも橋絡水トリーの存在による直流漏れ電流が検出され、 さらに、交流破壊電圧も 10kV 程度と著しく低下している。このように絶縁性能が低下し たケーブルでは不良判定が要求されるケースであるが、直流成分電流の測定結果を見ると、 試料①で良判定、試料②で重度要注意判定となっている。水トリーの発生状況を見ると、 試料①の水トリーは、図 5.30 に示すように先端が細長く伸びていくタイプで、橋絡しても 直流漏れ電流が流れにくい。しかし、電圧を上昇させると電流の急増現象やキック現象が 表れやすくなり、直流漏れ電流測定中や運転再開後間もなくして絶縁破壊が生じやすいタ イプである。一方、試料②の水トリーは扇状またはマリモ状に広がり全体的に伸びていく タイプで、橋絡すると比較的低い電圧で直流漏れ電流が観測される。比較的大きな漏れ電 流が流れる割には直流漏れ電流測定中や運転再開後の絶縁破壊が生じにくく、直流成分電 流る観測されやすいタイプである。

試料	交流絶縁抵抗 (オンライン測定 : 低周波重畳法)		直流成分電流 (オンライン測定)		直流漏れ電流 (オフライン測定)		交流 破壊電圧
①6.6kVCV725mm ² ×3×13m(1972製)	20 V	218 MΩ		0.62 nA	5 kV	1.88 μΑ	
					8 kV	電流急増 のため中断	11kV
1.00mm/div	判定	不良	判定	良	判定	不良	
②6.6kV CV 3/38mm ² ×20m(1972製)	20 V	<mark>189</mark> ΜΩ		51.73 nA	5 kV	13.4 μΑ	
							10kV
1.00mm/div	判定	不良	判定	重度 要注意	判定	不良	
③6.6kV CV 1600mm ² ×3×5m(1978製)	20 V	642 MΩ	0	0.06 nA	5 kV	0.01µA未満	
A ST BACK					8 kV	0.01µA未満	30kV
AND THE PARTY OF				\searrow	10 kV	0.01µA未満	
1.00mm/div	判定	要注意	判定	良	判定	良	
④6.6kV CVT 60mm ² ×24m(1976製)	20 V	904 MΩ		0.09 nA	5 kV	0.01µA未満	
					8 kV	0.01µA未満	25EV
MA. MA					10 kV	0.01µA未満	ZJRV
1.00mm/div	判定	要注意	判定	良	判定	良	
⑤6.6kV CVT 38mm ² ×5m(1997製)	20 V	MΩ 10,000 以 上		0.09 nA	5 kV	0.01µA未満	
					8 kV	0.01µA未満	50kVPL -
5					10 kV	0.01µA未満	JUNT CALL
1.00mm/div	判定	良	判定	良	判定	良	

表 5.5 交流絶縁抵抗と直流成分電流の測定結果比較一覧

(a) 先端が細長く伸びる橋絡水トリーの例 (b) 先端が細長く伸びる未橋絡水トリーの例 図 5.30 劣化信号が検出されにくい先端が細長く伸びる水トリーの例

したがって,直流漏れ電流が流れにくい先端が細長く伸びるタイプの橋絡水トリーでは, 直流成分法での劣化検出が困難な場合があるが,このような水トリーが発生したケーブル でも橋絡水トリーの他に未橋絡水トリーが多数存在すると考えられ,交流絶縁抵抗の低下 として劣化を捉えることが可能と考えられる。また,交流破壊電圧とオンラインで測定し た交流絶縁抵抗の関係および判定を見ても,低周波重畳法では概ね劣化の度合いに応じた 結果が得られることが分かる。

5.5.3 交流重畳法との比較

配電用 6.6kV CV ケーブルのオンライン診断法としては,1990 年後半(平成 11 年頃)までは直流成分法が主流であったが,低周波重畳法の実用化後,交流重畳法が開発された。 2000 年代(平成 12 年以降)になり直流成分法の判定に疑問が抱かれるようになり,ユー ザーにおいて他のオンライン診断法への見直しについて検討が開始された。著者も低周波 重畳法への切り替えを推進するために,ユーザーに対しオンラインで交流絶縁抵抗を測定 する低周波重畳法の提案を行い,比較検証試験に挑んできた。

比較試験で実施した診断法は、オンラインでは直流成分法、交流重畳法、低周波重畳法、 オフラインでは直流漏れ電流法である。なお、破壊電圧の確認は一部のケーブルについて 実施しており、フィールドでは直流破壊試験、撤去後は実験室で交流破壊試験を実施して いる。

(1) フィールドでの比較検証試験

測定対象ケーブルは T-T または E-T タイプであり、その他のケーブルの諸元と各種診断 法による測定結果および劣化判定の一覧を表 5.6 に示す。なお、低周波重畳法の測定は自 ら実施しているが、直流漏れ電流測定、交流重畳法、直流成分法、破壊電圧については、 第三者で実施された測定および試験結果をヒアリングし確認した内容を含んでいる。また, 低周波重畳法については同一条件で4回ずつ測定しており,他のオンライン診断法につい ても複数回測定している場合は,測定値の範囲を記録している。

次に,表 5.7 にフィールドで得られた各種診断法の判定一覧と,直流漏れ電流法の判定 を基準とした場合の各種診断法の判定の適合率を示す。なお,複数回測定した場合は,安 全側で厳しい判定となる方を採用している。

表 5.6 に示すとおり, 直流漏れ電流測定の結果から No.8 以外は橋絡水トリーが存在する と思われる劣化ケーブルと考えられる。

No.	サイズ [mm ²]	長さ [m]	製造年	直流漏れ電流 [µA]at DC10kV	破壞電圧 [kV]	低周波重畳の判定 (測定結果[MΩ])	交流重畳法の判定 (測定結果[nA])	直流成分法 の判定
1	60	26	1981	0.79 (キック有)	—	良 (1,160~1,250)	良 (0.2)	-
2	60	28	1980	0.026 (キック有)	_	良 (2,010~2,240)	良 (0.1)	_
3	60	23	1982	4.35 (キック有)	DC13	要注意~良 (743~1,910)	良 (5~6)	_
4	60	40	1983	3.162	_	要注意 (445~486)	不良 (18~19)	_
5	60	95	1980	1.059 (キック有)	_	不良 (181~278)	良 (7.8)	_
6	250	115	1980	17.75	_	不良 (110~138)	良~不良 (0.1 ~ 30)	_
7	250	145	1976	1.0程度	DC14	不良 (18.7~30.3)	不良 (130)	_
8	60	55	1983	0.01	_	良 (1,340~4,140)	良 (0)	良~ 重度要注意
9	22	54	1972	7.83	数日後, 運転中に 絶縁破壊	良 (1,400~7,110)	良 (0~1)	良
10	60	34	1980	0.5 (キック有)	AC9	良 (2,040~2,660) 撤去後: 要注意 (700)	良 (3~5) 撤去後: 良~不良 (4~30)	良
11	325	130	1978	0.3	_	要注意 (480~502)	良 (2~3)	良
12	60	65	1980	6.31	AC15	要注意 (595) 撤去後: 不良(305)	不良 (25) 撤去後: 良~不良 (5~426)	良
13	60	30	1979	5.18	AC23	不良~良 (354~10,000)	良 (1~2)	良
14	250	148	1983	3.27	_	不良~要注意 (258~471)	良 (1~5)	軽度要注意
15	22	111	1980	4.17 (キック有)	_	不良 (67.9~74)	不良 (40~60)	良~ 軽度要注意
16	250	346	1977	2.62	_	不良 (16.3~50.4)	不良 (26)	不良
17	500/325	203	1974	1.84	—	不良 (200~231)	良~不良 (8 ~ 10)	良

表 5.6 各種診断法による測定結果および判定の比較一覧

まず,10試料(No.8~17)の測定結果が確認できた直流成分法の判定を見ると,不良と 考えられる9試料のうち1試料(No.16)のみ不良,6試料(No.9~13,17)で良判定,良 と考えられる1試料(No.8)で良~重度要注意判定が得られており,直流成分法では劣化 の程度に応じた結果が得られにくいことが分かる。水トリーの直流成分電流発生機構の実 験的な調査が行われた結果から,直流成分電流の発生起源が水トリー外部の導体,吸水し た半導電層,遮へい銅テープにある⁽¹²⁾とされており,水トリーの形状や水分の分布状態に よる影響を強く受け,水トリー劣化程度との相関が得られにくいのではないかと考えられ る。

表 5.7 フィールドで得られた各種診断法の判定一覧と

No.	直流漏れ電流法の判定	低周波重畳法の判定	交流重畳法の判定	直流成分法の判定
1	要注意	良	良	—
2	要注意	良	良	-
3	不良	要注意	良	_
4	不良	要注意	不良	-
5	不良	不良	良	_
6	不良	不良	不良	_
7	不良	不良	不良	·
8	良	良	良	重度要注意
9	不良	良	良	良
10	要注意	良	良	良
11	要注意	要注意	良	良
12	不良	要注意	不良	良
13	不良	不良	良	良
14	不良	不良	良	軽度要注意
15	不良	不良	不良	軽度要注意
16	不良	不良	不良	不良
17	不良	不良	不良	良
①不	良・要注意判定の適合率	75%	44%	22%
②不	良判定の適合率	67%	58%	14%
③要	注意判定の適合率	25%	_	0%
④良	判定の適合率	100%	100%	0%

直流漏れ電流法の判定を基準とした各種診断法の判定の適合率

ここで、表 5.7 に示している直流漏れ電流法の判定を基準とした各種診断法の判定の適 合率について説明する。直流漏れ電流法の劣化判定は表 5.4 に示す判定基準に基づき,他 の診断法での劣化判定は 2.4 節で示した判定基準に基づき実施している。①不良・要注意 判定の適合率は,直流漏れ電流法で不良または要注意判定が得られたもののうち,他の診 断法で不良または要注意判定となった割合を示している(交流重畳法では要注意判定がな い)。つづいて,②不良判定の適合率は,直流漏れ電流法で不良判定が得られたもののうち 他の診断法でも不良判定となった割合,③要注意判定の適合率は,直流漏れ電流法で要注 意判定が得られたもののうち他の診断法でも要注意判定となった割合(交流重畳法では要 注意判定がない),④良判定の適合率は,直流漏れ電流法で良判定が得られたもののうち他

直流漏れ電流法の判定を正しいものとすると、判定の適合率は低周波重畳法が最も高く、 つづいて交流重畳法となる。なお、サンプル数は少ないものの、直流成分法は、低周波重 畳や交流重畳法に比べ、判定の適合率が明らかに低いことが分かる。絶縁破壊事故を未然 に防止するためには、劣化が進み危険な状態となっているケーブルを確実に不良と判定す る必要があるが、交流破壊電圧が電気設備技術基準で要求される耐電圧である 10.35kV 以 下のものや直流漏れ電流法で不良と判定されたもので、低周波重畳法または交流重畳法で 良と判定されてしまったケーブルの測定結果から考えられることについて述べる。

- ・ 測定の数日後に運転中に絶縁破壊事故を起こした No.9 は,直流漏れ電流が 7.83μA で 直流漏れ電流法では不良判定となるにもかかわらず,低周波重畳法と交流重畳法では 良判定が得られている。交流重畳電流が 0~1nA で交流重畳法では劣化の心配がない と判定される結果になるが,低周波重畳法で得られた交流絶縁抵抗を見ると 1,400~
 7,110MΩの範囲で変動し要注意判定のしきい値である 1,000MΩ に近いことから,劣 化信号が小さく不安定な細長いタイプの橋絡水トリーと未橋絡水トリーが存在して いた可能性が考えられる。
- 交流破壊電圧が9kVと運転に必要な耐電圧 10.35kVを下回った No.10 については、直流漏れ電流が0.5µAでキック現象が確認され直流漏れ電流法では要注意判定となるが、低周波重畳法と交流重畳法では良判定が得られている。交流重畳電流が3~5nAで交流重畳法では劣化の心配がないと判定される結果になるが、低周波重畳法で得られた交流絶縁抵抗は2,040~2,660MΩの範囲で要注意判定のしきい値である1,000MΩに比較的近いことから、No.9 同様、劣化信号が非常に小さい細長いタイプの橋絡水トリーと未橋絡水トリーが存在していた可能性が考えられる。このNo.10 については、撤去後の試験も実施しているので、その結果を踏まえ後で検討する。
- 直流漏れ電流法と低周波重畳法で不良判定が得られた No.5, 14 については, 交流重畳 電流が No.5 では 7.8nA, No.14 では 1~5nA で, いずれも交流重畳法では良判定とな

る。直流漏れ電流の大きさ(No.5 は 1.059µA でキック現象あり, No.14 は 3.27µA)や 交流絶縁抵抗値(No.5 では 181~278MΩ, No.14 では 258~471MΩ)から劣化が進ん でいると推定できるレベルであるが,交流重畳法では小さな交流重畳電流しか検出さ れていない。劣化が進んでいるにもかかわらず交流重畳電流が小さくなる原因が他に あるものと考えられる。

- 交流破壊電圧が23kVで、直流漏れ電流が5.18μAで直流漏れ電流法で不良と判定されたNo.13については、低周波重畳法では交流絶縁抵抗が354~10,000MΩの範囲で大きく変動する結果が得られ安全側で厳しい判定をすると不良となる。しかし、交流重畳電流は1~2nAと小さく交流重畳法では劣化の心配がないと判定される結果になる。交流破壊試験後の解体調査の結果、水トリー劣化が確認され、さらに遮へい銅テープが破断直前または破断した状況が確認されたことから、交流絶縁抵抗の変動は遮へい銅テープの抵抗変動の影響が表れているものと考えられる。これらのことから、低周波重畳法によるオンライン測定においては、複数回測定した交流絶縁抵抗の最低値で判定を行う必要があることが分かる。一方、交流重畳法では、複数回の測定においても小さな交流重畳電流しか検出されていないことから、No.5、14と同様劣化が進んでいるにもかかわらず交流重畳電流が小さくなる原因があるものと考えられる。
- ・直流破壊電圧が 13kV,直流漏れ電流が 4.35μA でキック現象が確認され直流漏れ電流 法で不良と判定された No.3 については、低周波重畳法による交流絶縁抵抗の測定結 果が 743~1,910MΩの範囲で変動しており、最低値で見ると要注意判定となる。一方、 交流重畳法では 5~6nA の交流重畳電流しか検出されず良判定となることから、No.5、
 13、14 と同様劣化が進んでいるにもかかわらず交流重畳電流が小さくなる原因がある ものと考えられる。

次に, 直流漏れ電流法で要注意と判定されたもので, 低周波重畳法または交流重畳法で 良と判定されてしまったケーブルの測定結果から考えられることについて述べる。

- 0.79μAの直流漏れ電流とキック現象が確認された No.1 と 0.026μAの直流漏れ電流と キック現象が確認された No.2の直流漏れ電流法で要注意と判定されたものについて は、低周波重畳法と交流重畳法では良判定が得られている。交流重畳電流は No.1 が 0.2nA, No.2 が 0.1nA で交流重畳法では劣化の心配がないと判定される結果になるが、 低周波重畳法で得られた交流絶縁抵抗を見ると No.1 が 1,160~1,250MΩ, No.2 が 2,010 ~2,240MΩ となっており要注意判定のしきい値である 1,000MΩ に近いことから、劣 化信号が小さい No.9、10 と同様細長いタイプの橋絡水トリーと未橋絡水トリーが存 在していた可能性が考えられる。
- 0.3μA の直流漏れ電流が確認され直流漏れ電流法で要注意と判定された No.11 については、交流絶縁抵抗が 480~502MΩ で低周波重畳法では要注意判定となり、不良判定

のしきい値である 400MΩ に近いことから,劣化がある程度進んでいるものと考えられる。一方,交流重畳法では 2~3nA の交流重畳電流しか検出されず良判定となることから, No.3, 5, 13, 14 と同様劣化が進んでいるにもかかわらず交流重畳電流が小さくなる原因があるものと考えられる。

(2) 撤去したケーブルでの比較検証試験

フィールドでのオンライン測定では、安全上零相電圧を利用するため3相一括測定が必 須であり、フィールドでは相毎の特性確認ができない。しかし、撤去したケーブルの実験 室での測定においては、各測定装置に誘導される電圧が危険なレベルにならない範囲の静 電容量と電圧印加であれば、単相での特性確認が可能となる。そこで、フィールドで測定 した2組のケーブルについて、切断し撤去されたものを試料とし単相でのオンライン測定 を実施した。なお、実験室では3相交流でのオンライン測定を実施できなかったので、フ ィールドでの3相一括のオンライン測定結果と、短く切断したケーブルを用いた単相のオ ンライン測定結果の比較となる。また、別の撤去ケーブルを用い、単相でオンライン測定 した結果と交流破壊電圧の関係も調査した。

1) 撤去ケーブルでの単相測定結果

表 5.6 および 5.7 に示す No.10, 12 のケーブルを切断して撤去し,実験室にて端末処理 を行って単相でのオンライン測定を行った結果を表 5.8 に示す。

No.	サイズ [mm ²]	長さ [m]	製造年	測定条件	相別	交流破 壊電圧	直流漏れ電流	交流絶縁抵抗	交流重 畳電流						
						(\mathbf{KV})		$(\mathbf{M}\mathbf{\Omega})$	(nA)						
		34		フィールド	3相一圩	0	10kV-0.5µA	2,040	3~5						
		54		オンライン	J10 10	7	(キック有)	2,660	5-5						
10	60		1020		黒相	9	要注意	2,116	18						
10	00	00 14	撤去後 オンライン	赤相	14	不良	1,277	30							
				白相	24	良	5,800	4							
					3相一括に換算した交流絶縁抵抗			700	_						
		65		フィールド オンライン	3相一括	15	10kV-6.31µA	595	25						
	12 60) 30	1980								黒相	25	良	5,705	5.7
12				撤去後	赤相	15	不良	342	426						
				オンライン	白相	17	良	5,544	5.5						
					3相一括(こ換算した	と交流絶縁抵抗	305	_						

表 5.8 単相で測定した結果の一覧

フィールドでオンライン測定を行った時よりもケーブルが短くなっているので、実験室 での単相試験では、絶縁性能が改善したことを示す結果が得られるものと予想されたが、 結果は異なっている。交流絶縁抵抗をオフラインで単相と3相一括で測定することはよく あることであるが、その場合、各相の抵抗が並列接続されているとして計算した交流絶縁 抵抗と実際に3相一括で測定した絶縁抵抗は概ね近い値になる。

しかしながら, No.10 については, フィールドでの低周波重畳法によるオンライン測定 で交流絶縁抵抗が 2040~2,660MΩ で良判定であったものが, 切断し撤去した後の短くなっ たケーブル各相の測定結果から算出した 3 相一括の交流絶縁抵抗が 700MΩ で要注意判定 となっている。また, 交流重畳法ではフィールドでの交流重畳によるオンライン測定で 3 ~5nA の交流重畳電流が観測され良判定であったものが, 撤去後の単相測定では 4~30nA と黒相と赤相が不良判定, 白相が良判定となっている。

No.12 については、フィールドでの低周波重畳法によるオンライン測定で交流絶縁抵抗 が 595MΩ で要注意判定であったものが、撤去後の短く切断したケーブル各相の測定結果 から算出した 3 相一括の交流絶縁抵抗が 305MΩ で不良判定となっている。また、交流重 畳法ではフィールドでのオンライン測定で 25nA の交流重畳電流が観測され不良判定であ ったものが、撤去後の単相測定では不良判定は変わらないものの 5~426nA と 3 相のうち 赤相のみ 426nA で不良判定となっている。

撤去前後の試料長さなど条件の違いがあるものの、いずれもオンラインで3相一括測定 の結果と単相測定の結果に大きな違いがあることから、何らかの水トリーの電気的特性が 影響している可能性が考えられる。そこで、低周波重畳法で測定した低周波損失電流およ び交流絶縁抵抗について、5.3節で検討した水トリーの電気伝導機構に基づいた特性を考 えてみる。水トリー劣化したケーブルを低周波重畳法でオンライン測定した時の低周波損 失電流は(5.18)式で表されるので、低周波電圧 E の1 乗と3 乗に依存するコンダクタン スの影響と商用周波電圧の大きさの影響を受ける。しかし、3 相交流の位相差の影響を受 けないので、オンラインで交流絶縁抵抗を3相一括測定した結果と単相測定した結果の相 違の原因について、電気伝導機構からの説明はできない。そこで、5.43項の図 5.22 に示し た1個の橋絡水トリーの低周波損失電流をオンラインで測定した時の時間変化を見ると、 1 個の橋絡水トリーでは長時間安定した特性が得られるとは限らないことから、橋絡水ト リーの特性変化の影響を受けた可能性が考えられる。

次に、交流重畳法で測定した交流重畳電流についても、5.3節で検討した水トリーの電気 伝導機構に基づいた特性を考えてみる。水トリー劣化したケーブルを交流重畳法でオンラ イン測定した時の交流重畳電流は、(5.16)式で表され、sinの角度部分に位相角 φ が含ま れる。これにより、3 相交流の商用周波電圧が印加された状態で交流重畳電流を測定する と、各相の水トリー劣化の程度に応じた変調信号として検出される交流重畳電流の打ち消

-168-

し合いが生じ、小さな劣化信号として測定されてしまう可能性があることが分かる。この ことが、オンラインで交流重畳電流を3相一括測定した結果と単相測定した結果の大きな 違いの原因として説明できる。

また,水トリーの電気伝導機構とは無関係であるが,著者は,運転電圧を利用した商用 周波損失電流測定によるオンライン診断法を検討⁽²²⁾⁽²³⁾する中で,フィールドでの測定にお いて,商用周波数のわずかな変動(60±0.05Hz 程度)の影響が測定結果のバラツキや安定 性に影響を及ぼすことを確認しており,この周波数変動が変調信号として検出される交流 重畳電流にも影響するものと考えられる。(この対策のため,現在の測定装置では FFT に よる 1Hz を中心とする周波数帯域の信号の大きさで判定されている)

したがって、交流重畳法によるオンライン測定で、3 相一括測定した場合と単相測定した場合の測定結果の相違や測定結果の変動の要因として、3 相交流による変調信号の打ち 消し合いによるものと商用周波数のわずかな変動が影響しているものと考えられる。

2) 撤去ケーブルでの単相測定結果と交流破壊電圧の関係調査

表 5.6 に示す 17 組のケーブルを切断し撤去されたものの中から 10~30m のケーブル 7 本を試料とし、オンラインでの単相測定と交流破壊試験をユーザーにて実施された。著者 は、試験への立会ができなかったが、測定装置の提供などの協力を行った関係で提供いた だいた結果について分析を行った。得られた低周波重畳法および交流重畳法の単相でのオ ンライン測定結果と交流破壊電圧の関係について図 5.31~図 5.33 に示す。図 5.31 では低 周波重畳法の判定に使用する交流絶縁抵抗 Rx と交流破壊電圧の関係を示しているが、低 周波損失電流で電気的特性を検討することがあることから、図 5.32 では低周波電圧 E を印 加した時の交流絶縁抵抗 Rx の測定結果から、 $I_R = E / Rx$ として算出した低周波損失電流 I_R と交流破壊電圧の関係を示した。

図 5.31 および図 5.32 を見ると,相関係数 R が 0.857 と高く交流絶縁抵抗および低周波 損失電流で表した判定基準を決定するカーブの上側に分布している。サンプル数は少ない ものの,単相で測定した結果では劣化との相関が高く,低周波重畳法の判定基準も妥当で あることが分かる。

次に,図 5.33 を見ると,相関係数 R が 0.696 と低周波重畳法に比べ低いものの,交流破 壊電圧が低いものは不良と判定される領域にあることから,交流重畳法の判定基準も概ね 妥当であると言える。

図 5.31 オンラインで単相測定した交流絶縁抵抗と交流破壊電圧の関係

図 5.32 オンラインで単相測定した低周波損失電流と交流破壊電圧の関係

図 5.33 オンラインで単相測定した交流重畳電流と交流破壊電圧の関係

5.6 交流絶縁抵抗測定法による水トリー劣化検出性能の評価

まず,前節における検討結果より,水トリー劣化ケーブルにおいて,直流漏れ電流法で 得られた判定を基準とした場合の各オンライン診断法の判定の適合率と,オンライン測定 で得られた結果と交流破壊電圧との相関を見ると,オンライン診断法としては,優れたも のから低周波重畳法(オンラインでの交流絶縁抵抗測定),交流重畳法,直流成分法の順と なる。なお,直流成分法については,判定の適合率だけではなく劣化との相関がかなり小 さいことが明らかになった。

次に,直流成分法と同様オンライン測定作業が安全かつ簡便である交流重畳法は、判定 の適合率および劣化程度との相関が比較的高い診断法であることを確認した。しかしなが ら、オンラインでの3相一括測定において、劣化程度との相関が小さくなる事象が確認さ れた。この原因として、水トリーの電気伝導機構より、劣化信号として検出される交流重 畳電流が重畳する交流電圧と3相交流の商用周波電圧に基づく変調信号であることから、 3 相交流電圧に起因した変調信号の打ち消し合いにより、劣化信号が小さく検出されてし まう可能性が考えられる。

一方,オンラインで交流絶縁抵抗を測定する低周波重畳法は,3 相交流電圧による劣化 信号の打ち消し合いがほとんどないことから,劣化の程度に応じた測定結果が得られる可 能性が高いものと考えられる。表 5.7 に示す判定の適合率,図 5.31~図 5.33 に示すオンラ インでの単相測定結果と交流破壊電圧との相関から見ても,今回比較評価したオンライン 診断法の中では,劣化検出性能が最も優れた診断法であると言える。

5.4 節では、低周波電圧のみを印加する場合、低周波損失電流(交流絶縁抵抗)の低周波 印加電圧依存性から水トリー劣化の有無は推定できるが、橋絡水トリーと未橋絡水トリー の区別まではできないことを確認した。また、商用周波電圧が印加された状態で低周波電 圧を重畳し低周波損失電流(交流絶縁抵抗)を測定することによって、未橋絡水トリー劣 化と橋絡水トリー劣化したケーブルから得られる低周波損失電流(交流絶縁抵抗)の特性 差が明確になるが、橋絡水トリーと未橋絡水トリーの区別まではできないことも確認した。 これらのことから、低周波重畳法によるオンラインでの交流絶縁抵抗測定やオフラインで の交流絶縁抵抗測定では水トリー劣化の有無は推定できるが、橋絡水トリーと未橋絡水ト リーを区別するためには、オフラインで直流高電圧を印加する直流漏れ電流測定が必要と なることが分かる。

なお、橋絡水トリーが存在するケーブルでは、低周波電圧に直流電圧を重畳して測定す ると、直流重畳電圧の上昇に伴い低周波損失電流が増加(交流絶縁抵抗が低下)する特性 があることを確認した。また、橋絡・未橋絡関係なく水トリーが存在すると、低周波印加 電圧の上昇とともに低周波損失電流が増加(交流絶縁抵抗が低下)する特性があることに ついても確認した。これらの特性については、5.3 節で検討した水トリーの電気伝導機構と して提案されているイオン性伝導, Poole-Frenkel 効果による電子性伝導, 空間電荷制限電 流などからも説明できることが分かった。

以上のことから、オンライン測定で水トリーの橋絡・未橋絡を区別することは困難であ るが、オフラインで、①低周波損失電流(交流絶縁抵抗)の低周波印加電圧依存性を確認 し、水トリー劣化の有無を判定する、②低周波電圧を印加した状態で直流電圧を重畳して、 低周波損失電流(交流絶縁抵抗)の直流重畳電圧依存性を確認し、水トリーの橋絡・未橋 絡を判定する、この2つの測定を組み合わせたオフライン診断法が簡便かつ非破壊測定が 可能で最も優れた劣化検出性能を発揮するものと考えられる。

5.7 22kV 以上の CV ケーブルにおける水トリー劣化診断への適用検討

前節までの検討結果により,低周波重畳法による交流絶縁抵抗や低周波損失電流のオン ライン測定のみでは,橋絡水トリーと未橋絡水トリーを区別することは難しいことが明ら かとなった。一方で,オフラインで交流絶縁抵抗や低周波損失電流の低周波印加電圧依存 性および測定周波数以外の電圧の重畳に対する依存性の確認で,水トリー劣化の有無の推 定と橋絡水トリーおよび未橋絡水トリーを区別できる可能性があることを明らかにした。

22kV 以上の CV ケーブルでは、水トリーが橋絡する前に絶縁破壊に至ると考えられていることから、未橋絡状態の水トリーを検出できる必要がある⁽⁴⁾⁽⁵⁾。そのため、オフラインで低周波電圧を用いた交流絶縁抵抗や低周波損失電流の電圧依存性を確認する方法が、22kV以上の CV ケーブルのオフライン診断法として適用できる可能性について検討した。

5.7.1 66kV CV ケーブルにおける水トリー劣化診断への適用検討

表 5.9 に示す試料について、オフラインで交流絶縁抵抗と低周波損失電流の低周波印加 電圧依存性を確認した。なお、交流破壊電圧は、交流絶縁抵抗と低周波損失電流の低周波 印加電圧依存性を確認した後に実施しており、交流破壊電圧が低下しているものについて は、後の解体調査で 5~6mm の長さに成長した未橋絡水トリーが確認された。測定結果を 図 5.34 に示す。

サイズ・亘長	製造年	絶縁厚	交流破壊電圧
CV 1c $ imes$ 200mm 2 $ imes$ 30m $ imes$ 3相	2012 年	11mm	150kV以上
${ m CV}$ 1c $ imes$ 200mm 2 $ imes$ 29m $ imes$ 3相	1974年	13mm	150kV 以上
CV 1 $c \times 325$ mm ² × 60m(白相)	1972 年	13mm	$55 \mathrm{kV}$
CV 1 $c \times 325$ mm ² × 62m(青相)	1972 年	13mm	60kV

表 5.9 66kV CV ケーブル試料の諸元

図 5.34 66kV CV ケーブルの低周波印加電圧依存性

図 5.34 より、未劣化ケーブルと水トリー劣化ケーブルでは、明らかに交流絶縁抵抗と低 周波損失電流の低周波印加電圧依存性が異なることが分かる。なお、水トリー劣化の有無 は、低周波損失電流より交流絶縁抵抗の方が視覚的に判定することが可能であるため、判 定で扱うパラメータとしては、交流絶縁抵抗の方がフィールドに適用しやすいものと考え られる。なお、交流絶縁抵抗や低周波損失電流では、水トリー劣化ケーブルと未劣化ケー ブルの測定結果が逆転することがあることから、電圧依存性(n値:べき指数)の確認が 必要になるものと考えられる。ここで、55kV で絶縁破壊を起こした白相の電圧依存性を示 す交流絶縁抵抗のn値は-0.537、低周波損失電流のn値は1.54、60kV で絶縁破壊を起こし た青相の電圧依存性を示す交流絶縁抵抗のn値は-0.235、低周波損失電流のn値は1.23 で あり、いずれの指標でもn値の絶対値が大きくなると劣化が進んでいるものと思われる結 果が得られている。

ここで、66kVのCVケーブルは導入当初からE-Eタイプであるので、外部半導電層と遮へい銅テープまたはワイヤーシールドで形成される金属しゃへい層との接触抵抗や外部半 導電層と電気的特性の変化の影響を確認するために、布設直後に対して布設後約 50 日経 過した時の交流絶縁抵抗の変化を確認した。対象ケーブルは2014年製の66kVCV325mm² ×83m ×3相であり、各相の測定結果を図 5.35 に示す。

布設直後の測定環境は,晴れ 13℃-44%,運転開始約 50 日後の測定環境は,晴れ 18℃ -48%であり,約 50 日の運用で測定環境の影響とは考えられない交流絶縁抵抗の低下(1/2 ~1/3 で低周波損失電流は 2~3 倍に増加)していることが分かる。水トリー劣化したケー ブルで確認されるような電圧上昇とともに交流絶縁抵抗が低下する特性は確認できないが, 2.3.2 項③で示した E-E タイプの外部半導電層および外部半導電層と金属しゃへい層間の 電気的特性の影響などに起因するものと考えられる交流絶縁抵抗の明らかな低下(低周波

-173-

損失電流の増加)が運転開始後約50日程度で表れている。これらのことより,水トリー劣 化の診断には交流絶縁抵抗や低周波損失電流の電圧依存性確認が必要であることが分かる。

したがって、低周波電圧を印加し水トリー劣化による交流絶縁抵抗や低周波損失電流の 電圧依存性を確認する方法は、22kV以上のCVケーブルの水トリー劣化診断法として適用 できる可能性があると考えられる。なお、フィールドへの適用においては、視覚的に判断 できる交流絶縁抵抗の電圧依存性を判定基準のパラメータとした方が妥当であると考えら れる。

図 5.35 66kV CV ケーブルで確認した交流絶縁抵抗の低周波印加電圧依存性

5.7.2 22kV CV ケーブルにおける水トリー劣化診断への適用検討

前項では、交流絶縁抵抗や低周波損失電流の低周波印加電圧依存性を評価することで、 66kVのCVケーブルの水トリー劣化診断に適用できる可能性を示したが、過去に、AIRを 用いて低周波損失電流や第3高調波電流の電圧依存性と交流破壊電界の関係を調査したこ とがあるので、その結果を図5.36に示す⁽²⁴⁾⁽²⁵⁾。

この結果を見ると、低周波損失電流の電圧依存性(n値:べき指数)および第3高調波 電流と交流破壊電界の相関が高いという結果が得られている。なお、その後この結果の信 頼性については十分な検証ができていないが、前項までの検討結果からも、低周波損失電 流の電圧依存性から算出できる交流絶縁抵抗の電圧依存性は、劣化診断パラメータとして 適用できる可能性があると考えられる。一方、第3高調波電流については、電流の大きさ や重畳位相から劣化の程度を判定する方法などが実用化されている⁽²⁶⁾が、高調波電流や高 調波電流の重畳位相は水トリーの長さというよりは、絶縁体に含まれる水分量の影響を大 きく受けるというフィールドでの実態が確認されていることから、水トリー劣化診断に適 したパラメータであるとは言えないものと考えている。

図 5.36 低周波電圧を印加した時の電流特性と交流破壊電界の関係(24)

5.8 結言

橋絡水トリーと未橋絡水トリーを区別することができれば診断技術の大きな進歩につ ながることから、水トリーに流れる電流の特性について調査し、交流絶縁抵抗測定法を適 用した AIR による水トリー劣化の検出性能について評価を実施した。その結果に基づき 6.6kV の CV ケーブルの診断法としてフィールドに適用できる方法で、それぞれの劣化を 区別可能かどうかについて表 5.3 にまとめた⁶。

オフラインで低周波電圧のみを印加した時は,橋絡水トリーと未橋絡水トリーの区別が 難しくなる場合があるのに対し,商用周波電圧が印加されたオンライン状態で低周波電圧 を重畳して測定すると,橋絡水トリーと未橋絡水トリーの区別が容易になる可能性がある ことを確認した。フィールドでの劣化診断を想定すると,橋絡水トリー劣化,未橋絡水ト リー劣化,未劣化の区別は,オフラインで低周波損失電流または交流絶縁抵抗の低周波印 加電圧依存性の確認と直流漏れ電流測定を組み合わせた複合診断法で信頼性が高くなるこ とを明らかにした。また,現在実施している低周波重畳法によるオンライン診断で,要注 意・不良判定が得られたケーブルをオフラインで直流漏れ電流を測定する方法は,効率の 良い複合診断法であることを確認した。この方法は,劣化の可能性の高いケーブルをオン ライン診断で抽出し,オフライン診断で危険なケーブルを絞り込むことを意味する手法で ある。

次に,他の診断法との比較試験を実施し,AIR を用いオンラインで交流絶縁抵抗を測定 (低周波重畳法)した時の劣化検出性能や判定の信頼性について評価を行った。その結果, AIR を用いた低周波重畳法は直流成分法や交流重畳法に比べ,水トリー劣化との相関が高 い結果が得られ,信頼性の高い診断法であることを確認した。 さらに、水トリーの電気伝導機構として提案されているイオン性伝導、Poole-Frenkel 効 果による電子性伝導、空間電荷制限電流などからの説明と、水トリー劣化したケーブルで 得られた特性からの説明を試みた。その結果、オンライン測定で水トリーの橋絡・未橋絡 を区別することは困難であるが、オフラインで、①低周波損失電流(交流絶縁抵抗)の低 周波印加電圧依存性を確認し、水トリー劣化の有無を判定する、②低周波電圧を印加した 状態で直流電圧を重畳して、低周波損失電流(交流絶縁抵抗)の直流重畳電圧依存性を確 認し、水トリーの橋絡・未橋絡を判定する、この2つの測定を組み合わせたオフライン診 断法が簡便かつ非破壊測定が可能で最も優れた劣化検出性能を発揮することを示した。

そして,22kV以上のCVケーブルについては,未橋絡水トリーの検出が必要であることから,AIRによる交流絶縁抵抗の測定を行い水トリー劣化および交流破壊電圧(電界)との関係を調査した結果,22kV以上のCVケーブルの水トリー劣化診断に適用できる可能性があることを示した。

第5章参考文献

- (1) 江藤計介・小宮満明・志水善国:「直流重畳法による 11kV 劣化ケーブルの検出」,平 成 28 年電気学会全国大会講演論文集, No.2-015 (2016)
- (2) 橋詰俊成・堀田昌弘・中村和成・篠田千春・谷恒夫:「活線劣化診断法の有効性」,電 気学会誘電・絶縁材料研究会資料, DEI-95-38 (1995)
- (3) 電気学会・技術伝承を目的とした電力設備の絶縁診断技術調査専門委員会:「電力機 器・設備の絶縁診断技術」,オーム社(2015)
- (4) 電気学会・トリーイング劣化機構と高分子高次構造の影響調査専門委員会:「トリー イング劣化機構と高分子高次構造の影響」,電気学会技術報告,第 854 号(2002)
- (5) 髙橋俊裕・栗原隆史・足立和郎:「22kV 撤去 CV ケーブルの絶縁破壊前駆遮断試験と 橋絡水トリーの発見」,平成 30 年電気学会電力・エネルギー部門大会講演論文集, No.334 (2018)
- (6) 蒲原弘昭・工藤善則・篠原功・伊藤彰:「低周波電圧を用いた 6kV 級 CV ケーブルの 絶縁診断における水トリー劣化検出性能」,電気学会論文誌 A, Vol.119, No.6, pp.814-820 (1999)
- (7) 蒲原弘昭・工藤善則・篠原功・伊藤 彰:「低周波損失電流測定による CV ケーブルの 絶縁劣化診断法に関する検討」,電気学会誘電・絶縁材料研究会資料,DEI-97-93 (1997)
- (8) 熊澤孝夫・杉山真一・堀田昌弘・橋詰俊成・谷恒夫:「水トリーの等価回路検討」,電 気学会放電・誘電・絶縁材料合同研究会資料, ED-97-57/DEI-97-58 (1997)
- (9) 速水敏幸:「高圧 CV ケーブルの直流漏れ電流を中心とした絶縁劣化診断法」,電気学 会誘電・絶縁材料研究会資料, DEI-91-20 (1991)
- (10)熊澤孝夫・錦見淳一・有馬泉・渡邉貞司・高木伸之:「直流成分電流の発生機構に基づいた活線劣化診断法の有効性に関する検討」,電気学会論文誌 B, Vol.116, No.1, pp.114-119(1996)
- (11)坂本中・井上修和・堺繁夫・中川雅喜:「水トリー劣化 CV ケーブルの交流誘電特性の検討(tanδの電圧特性と温度特性)」,平成4年電気学会全国大会講演論文集, No.1426(1992)
- (12)熊澤孝夫・都築律統・有馬泉・渡邉貞司・高木伸之:「水トリー劣化 CV ケーブルの 直流成分電流発生機構に関する実験的考察」,電気学会論文誌 B, Vol.114, No.10, pp.988-993 (1994)
- (13) 杣謙一郎:「架橋ポリエチレン絶縁電力ケーブルの長期信頼性向上技術に関する研究」,九州大学博士論文(1992)
- (14)例えば、大木義路・大久保仁・鈴置保雄・穂積直裕:「誘電体現象論」、改訂版、電気 学会(2021)
- (15)蒲原弘昭・工藤善則・江原由泰:「水トリー劣化した CV ケーブルに流れる電流の直流電圧および交流電圧特性」,電気学会論文誌 A, Vol.138, No.9, pp.463-470 (2018)
- (16)電気学会・トリーイング劣化基礎過程調査専門委員会:「高分子絶縁材料におけるト リーイング劣化の基礎課程」,電気学会技術報告,第 674 号(1998)
- (18)豊田毅彦・向井茂雄・大木義路・李英・前野恭:「ポリエチレン中の水トリーの導電 率と誘電率」, 電気学会論文誌 A, Vol.120, No.7, pp.750-754 (2000)
- (19)尾崎多文・伊東則幸・川井二郎,中村修平:「等価回路による水トリー劣化部の誘電 率と導電率の検討」,電気学会論文誌 A, Vol.123, No.5, pp.506-512 (2003)
- (20)上島征行・山本壽昭:「CV ケーブル活線劣化診断装置の開発」,九州電力研究報告, Vol.73, No.91006 (1991)
- (21)工藤善則・蒲原弘昭・篠原功・伊藤彰:「低周波電圧を用いた CV ケーブルの絶縁劣 化診断法に関する検討」,電気学会放電・高電圧合同研究会資料, ED-97-7, HV-97-7 (1997)
- (22)上薗洋之・東誠二・工藤善則・蒲原弘昭:「商用周波損失電流測定による CV ケーブ ル活線劣化診断法の開発」,平成12年電気学会電力・エネルギー部門大会講演論文 集,No.543 (2000)
- (23)別府康信・安永大・蒲原弘昭:「商用周波損失電流測定による CV ケーブル活線劣化 診断法の開発」,平成14年電気学会電力・エネルギー部門大会講演論文集,No.364 (2002)
- (24)浦野幸治・南善規・上野啓人・工藤善則・蒲原弘昭・伊藤彰:「低周波電圧を用いた CV ケーブル劣化診断法の検討」,平成11年電気学会電力・エネルギー部門大会講演 論文集,No.296(1999)
- (25)K. Urano, Y. Minami, H. Ueno, T. Matsuike, Y. Kudo, H. Kamohara and A. Ito :
 "Development New Diagnostic Method for XLPE Cable by Measurement of Loss Current Applied with Low Frequency Voltage", ACEID 1999, PB-13 (J-14)
- (26)八木幸弘・足立潔美・田中秀郎・辻本富幸・中出雅彦:「損失電流高調波成分による CV ケーブル劣化診断法の実用化」,電気学会誘電・絶縁材料/電線・ケーブル合同研究 会資料,DEI-03-28/EC-03-04 (2003)

第6章 総括

CV ケーブルが高圧ケーブルとして導入開始された 1959 年(昭和 39 年)以降,水トリ ー劣化による高圧 CV ケーブルの絶縁破壊事故が多発した 1970 年代後半(昭和 54 年頃) から 1980 年代後半(昭和 63 年頃)にかけ,様々な絶縁体の診断法が実用化された。しか しながら,フィールドに適用された診断法には種々の課題があり,これらの課題を解決し より信頼性の高いオンライン診断法として,1990 年(平成 2 年)に低周波重畳法による CV ケーブル活線劣化診断装置 CMLF が実用化された。

著者は、低周波重畳法導入当初の測定装置CMLFの実用化以降の技術的対応を行う中で、 実験室とフィールドでの測定結果の相違点の他、測定原理に対して測定回路および測定方 法の整合性について課題があることに気付き、測定原理の理論的検証を行った。その結果 明らかになった課題の解決を目的として、低周波重畳法の測定原理をより忠実に実現する ことで劣化の度合いと相関の高い結果が得られることを期待し、測定方法の開発に着手し た。その結果、交流絶縁抵抗測定法を考案し、自動測定可能な交流絶縁抵抗測定装置 AIR を開発した。さらに、交流絶縁抵抗測定法は、等価回路による計算およびシミュレーショ ンで、低周波重畳法の原理に基づく測定が可能であることを確認するとともに、実験室お よびフィールドでの検証と測定結果の再現性の確認を行い、特異な条件を除いて信頼性の 高い測定が可能であることを示した。

本学位論文では, AIR を開発する際に得られた水トリーの特性に関する知見を整理して, 従来の劣化検出技術を見直して課題を抽出し,それらを解決することにより診断精度の向 上を図った技術をまとめたものである。また,フィールドで収集した劣化ケーブルの測定 結果を整理分析し,水トリーの検出性能を確認した。さらに,AIR を用い水トリー劣化の 詳細な特性を調査することによって,橋絡水トリーと未橋絡水トリーを区別できないかを 検討し,他の診断法との比較評価を実施した上で,一連の検討結果に関するまとめを行っ た。

第2章では、水トリーの構造および発生・伸展と電気的特性について調査・分析した結 果を紹介し、水トリー劣化したケーブルのトラブルや劣化信号に及ぼす劣化以外の電気的 特性の影響を調査し整理した。そして、水トリー劣化の検出を目的とした各診断技術の調 査を行い、その歴史と各診断技術の概要についてまとめを行った。

結晶性高分子であるポリエチレン(PE)を架橋した XLPE 絶縁体で発生する水トリーは, ラメラや球晶すなわち結晶の界面にボイドが存在または生成し,そのボイド間がパスでつ ながることで水トリーとして成長していく。水トリーの発生には,電界の集中と水分の供 給が必要であり,この2つの要因の対策を講じることで水トリーの発生を抑制することが できる。また,水トリーの発生・伸展に影響を与える要因を整理し,追加された情報とし て,XLPE 絶縁体の熱膨張率が大きくなりヤング率と硬度が低下する 70℃付近で水トリー の伸展が大きくなるが,水トリー長が飽和傾向を示すことを紹介した。さらに,著者が確 認した加速劣化試験によって,70℃付近のヒートサイクルに乾湿のサイクルを加えること で,水トリー長が飽和せずに伸展する可能性があることを示した。

水トリーは非線形抵抗特性を示し、直流電圧では絶縁体を橋絡するかしないかで漏れ電 流の大きさが著しく異なる。一方、交流電圧では未橋絡状態でも健全部が静電容量となり、 この部分に流れる充電電流が水トリー劣化部に流れることにより、高調波成分を含んだ損 失電流が発生する。実際に布設されている運転中の CV ケーブルでは、11kV 以下において は水トリーが絶縁体を橋絡した後に絶縁破壊に至り、22kV 以上では未橋絡状態で絶縁破 壊に至ると考える必要があることから、運転中の絶縁破壊事故を防止するためには、11kV 以下は橋絡水トリー、22kV 以上は未橋絡水トリーの検出が必要となる。なお、著者のこれ までの経験から、実際に水トリー劣化したケーブルにおいても、構造や使用材料の影響な どで劣化判定が困難になる交流系診断法があるので、適用に際しては事前に有効性確認が 必要となることを示した。

そして、水トリー劣化の検出を目的とした診断技術の分類と歴史の再調査結果を一覧表 にまとめ、これまで実用化された診断技術をオフライン診断法とオンライン診断法に分け、 著者が経験したことや入手した情報を加えて概要を解説した。現状の診断技術を総括する と、3.3~11kV ではオフライン診断法である直流漏れ電流法の劣化検出性能が最も優れて いるが、オンライン診断法では交流系診断法の E-E タイプへの適用において課題があるの で、橋絡水トリーを検出できる直流重畳法の適用が推奨される。しかしながら、直流重畳 法の適用が困難な系統もあるので、E-E タイプのオンライン診断技術の確立は今後の課題 として残る。また、22kV 以上では、未橋絡水トリーを検出できる診断技術の適用が必要で あり、診断コストの低減と信頼性の向上が今後の課題であることを示した。

第3章では、高圧 CV ケーブルのオンライン診断法である低周波重畳法の当初の測定装置として開発された CMLF の概要について説明し、低周波重畳法の測定原理、CMLF の装置構成や概要、測定方法関する説明を行い、実用化によって明らかになった課題について整理した。これらの低周波重畳法の課題解決と水トリー劣化の検出性能向上を目的に、著者は交流絶縁抵抗測定装置 AIR を開発した。そして、新たに考案した交流絶縁抵抗測定法の測定原理と測定方法について説明し、オンライン測定システムとオフライン測定システムの測定装置構成について説明した。

つづいて,交流絶縁抵抗測定法に関して,測定理論と測定方法に基づく測定範囲と測定 誤差について数値計算による検討を行った結果,次のことを確認した。

- ①ブリッジ回路のバランス調整状態から意図的に標準コンデンサ側検出抵抗 Rv を変化 させた2点で測定し、この2つのベクトル電圧が作る三角形の高さから求めた差動電 圧Vmより、交流絶縁抵抗 Rx を得ることができる。
- ②2 点測定法で得られた差動電圧 Vmから交流絶縁抵抗 Rxを得る方法は、被測定ケーブル側検出抵抗 Rdに並列に接続される静電容量 Cdの影響による誤差が大きくなる。しかし、標準コンデンサの交流絶縁抵抗 Rsで補正し被測定ケーブルの交流絶縁抵抗 Rxを算出することによって、その影響を低減できる。

さらに、AIR による測定によって様々な劣化を検出した実績があること、水トリー劣化 による絶縁破壊事故を見逃した事例がないことから、交流絶縁抵抗測定法を適用した AIR は、高圧 CV ケーブルの劣化診断用の測定装置として必要な性能を有していることを確認 した。

なお、オンライン測定を行う場合には、シース絶縁抵抗 R_{sh}が 10kΩ を下回ると EVT の インピーダンスとわずかな大地抵抗の相互作用で、測定結果の信頼性が低下することや、 EVT の中性点と測定地点間の大地抵抗が大きくなると測定不可能になることが分かって おり、今後、それらの理由についても明らかにする必要があることを示した。

第4章では、交流絶縁抵抗測定装置 AIR の開発により、低周波重畳法による配電用高圧 CV ケーブルのオンライン測定装置として CMLF に加え AIR の2種類が存在することとな り、CMLF から AIR への更新のために実施した試験の結果について整理した。

AIR のフィールド適用においては,実験室とは異なる環境や系統などの諸条件の影響確 認と,CMLFの課題や問題点の対策を講じた後継機種としての評価が必要であったので, フィールドでの比較検証試験を実施した。その結果,AIRの適用により,耐ノイズ性の向 上,測定不能箇所の減少,測定結果の信頼性向上に伴う劣化検出性能の向上などの効果が 期待できることを確認した。さらに,この検証試験によって,対地間にリアクトルが接続 されている系統では,リアクトルの影響が表れ信頼性のある測定結果が得られないことを 明らかにした。

次に, AIR によるオンラインおよびオフライン測定によってフィールドデータを収集し, 低周波重畳法の測定装置としての評価を行った。その結果, AIR を用いた交流絶縁抵抗測 定によるオンラインまたはオフライン診断の適用によって,水トリー劣化のみならず,熱 劣化,遮へい銅テープの腐食,施工不良などの異常による事故の未然防止につながる可能 性が高いことを示した。一方で,熱劣化や遮へい銅テープの腐食,施工不良なども含めた 上での交流破壊電圧や余寿命との相関については, さらなる検討が必要であることも示した。

第5章では、橋絡水トリーと未橋絡水トリーを区別することができれば診断技術の大き な進歩につながることから、水トリーに流れる電流の特性を調査し、AIR による水トリー 劣化検出性能について評価を実施した。その結果に基づき 6.6kV の CV ケーブルの診断法 としてフィールドに適用可能な方法で、それぞれの劣化を区別可能かについて表 5.3 にま とめた。

低周波電圧のみを印加するより,商用周波電圧が印加されたオンライン状態で低周波電 圧を重畳して測定すると,橋絡水トリーと未橋絡水トリーの区別が容易になる可能性があ ることを示した。フィールドでの劣化診断を想定すると,橋絡水トリー劣化,未橋絡水ト リー劣化,未劣化の区別は,オフラインで低周波損失電流または交流絶縁抵抗の低周波印 加電圧依存性の確認と直流漏れ電流測定を組み合わせた複合診断法で信頼性が高くなるこ とを明らかにした。また,現在実施している低周波重畳法によるオンライン診断で,要注 意・不良判定が得られたケーブルをオフラインで直流漏れ電流を測定する方法は,効率の 良い複合診断法であることも確認した。この方法は,劣化の可能性の高いケーブルをオン ライン診断で抽出し,オフライン診断で危険なケーブルを絞り込むことを意味する手法で ある。

次に,他の診断法との比較試験を実施し,AIR を用いオンラインで交流絶縁抵抗を測定 (低周波重畳法)した時の劣化検出性能や判定の信頼性について評価を行った。その結果, AIR を用いた低周波重畳法は直流成分法や交流重畳法に比べ,水トリー劣化との相関が高 い結果が得られ,信頼性の高い診断法であることを確認した。さらに,水トリーの電気伝 導機構からの説明も試みた結果,オンライン測定で水トリーの橋絡・未橋絡を区別するこ とは困難であるが,オフラインで,①低周波損失電流(交流絶縁抵抗)の低周波印加電圧 依存性を確認し,水トリー劣化の有無を判定する,②低周波電圧を印加した状態で直流電 圧を重畳して,低周波損失電流(交流絶縁抵抗)の直流重畳電圧依存性を確認し,水トリ ーの橋絡・未橋絡を判定する,この2つの測定を組み合わせたオフライン診断法が簡便か つ非破壊測定が可能で最も優れた劣化検出性能を発揮することを示した。

そして,22kV以上のCVケーブルについては,未橋絡水トリーの検出が必要であることから,AIRによる交流絶縁抵抗の測定を行い水トリー劣化および交流破壊電圧(電界)との関係を調査した結果,22kV以上のCVケーブルの水トリー劣化診断に適用できる可能性があることを示した。

以上の研究成果を概説すると、次のとおりである。

低周波電圧を用いた交流絶縁抵抗および低周波損失電流をオンラインまたはオフライ ンで測定でき、水トリー劣化の診断に必要となる測定性能を有した交流絶縁抵抗測定装置 AIRの開発を行った。AIRの開発により、交流絶縁抵抗や低周波損失電流の様々な条件で の測定が可能となったことで、水トリーの特性調査による水トリー劣化の検出性能につい て評価を行うことができた。その結果、水トリー劣化の程度および交流破壊電圧と測定結 果の相関が高く、現在フィールドに適用されている 6.6kV クラスのオンライン診断法の中 で最も信頼性の高い測定法であることを再確認するとともに、22kV 以上のオフライン診 断法として適用できる可能性があることを確認できた。

なお、今後のさらなる検討課題として以下をあげる。

- ①オンラインで測定する場合,シース絶縁抵抗が 10kΩ を下回ると EVT のインピーダン スとわずかな大地抵抗の相互作用で測定結果の信頼性が低下する原因の特定と解決 方法
- ②EVT の中性点と測定地点間の大地抵抗が大きくなると測定不可能になる原因の特定 と解決方法
- ③22kV 以上の CV ケーブルの水トリー劣化診断法としての AIR の適用拡大

謝辞

本研究の取りまとめと論文の作成に当たり,終始懇切なるご指導,ご鞭撻を賜りました 東京都市大学教授の江原由泰博士に心より感謝の意を表します。

また、本論文作成において、幅広い見地から有意義なご助言をいただきました東京都市 大学教授の田中康寛博士、中島達人博士、岩尾徹博士に心より感謝の意を表します。

さらに、これまで多大なご助言やご支援をいただきました元武蔵工業大学(現東京都市 大学)の客員教授であった故速水敏幸博士,東京都市大学名誉教授の伊藤泰郎博士,交流 絶縁抵抗測定装置 AIR の開発当時ご助言やご指導をいただいた九州大学名誉教授の原雅 則博士,同じく九州大学教授の末廣純也博士に心より感謝の意を表します。

本研究は,著者が大電株式会社において,高圧 CV ケーブルのオンライン診断法として 開発された低周波重畳法の信頼性向上を目的とし,新たな測定方法である交流絶縁抵抗測 定法および交流絶縁抵抗測定装置 AIR の開発と CV ケーブル診断装置としての適用拡大に 取り組む過程で実施したものであり,当初の研究をリードしていただいた大電株式会社 OB の伊藤彰氏,研究へのサポートやフィールドでの検証試験にご尽力いただいた大電株 式会社の井上誠二氏,研究のパートナーとしてご協力いただいた大電株式会社の工藤善則 氏に心より感謝の意を表します。